{"title":"使用大型语言模型支持职前教师进行数学推理--以 ChatGPT 为工具创建几何数学证明的探索性研究。","authors":"Frederik Dilling, Marc Herrmann","doi":"10.3389/frai.2024.1460337","DOIUrl":null,"url":null,"abstract":"<p><p>In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry.\",\"authors\":\"Frederik Dilling, Marc Herrmann\",\"doi\":\"10.3389/frai.2024.1460337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1460337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1460337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry.
In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.