使用大型语言模型支持职前教师进行数学推理--以 ChatGPT 为工具创建几何数学证明的探索性研究。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1460337
Frederik Dilling, Marc Herrmann
{"title":"使用大型语言模型支持职前教师进行数学推理--以 ChatGPT 为工具创建几何数学证明的探索性研究。","authors":"Frederik Dilling, Marc Herrmann","doi":"10.3389/frai.2024.1460337","DOIUrl":null,"url":null,"abstract":"<p><p>In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry.\",\"authors\":\"Frederik Dilling, Marc Herrmann\",\"doi\":\"10.3389/frai.2024.1460337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1460337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1460337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项探索性研究中,我们调查了大型语言模型(LLM),特别是 ChatGPT 在支持小学数学教师职前几何数学证明建构方面的潜力。利用工具性创生理论框架,分析了学生使用 LLMs 的先前经验、他们对操作原理的信念以及他们与聊天机器人的互动。通过定性内容分析,对这些方面进行了归纳分类。结果表明,学生以前使用 LLM 的经验有限,而且主要用于非数学应用。至于他们的观念,大多数人对该技术的了解都很肤浅,误解也很普遍。对互动的分析表明,在从单一提示到整个聊天互动的三个不同层面上,存在多种类型的数学提示和模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry.

In this exploratory study, the potential of large language models (LLMs), specifically ChatGPT to support pre-service primary education mathematics teachers in constructing mathematical proofs in geometry is investigated. Utilizing the theoretical framework of instrumental genesis, the prior experiences of students with LLMs, their beliefs about the operating principle and their interactions with the chatbot are analyzed. Using qualitative content analysis, inductive categories for these aspects are formed. Results indicate that students had limited prior experiences with LLMs and used them predominantly for applications that are not mathematics specific. Regarding their beliefs, most show only superficial knowledge about the technology and misconceptions are common. The analysis of interactions showed multiple types of in parts mathematics-specific prompts and patterns on three different levels from single prompts to whole chat interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Impact of hypertension on coronary artery plaques and FFR-CT in type 2 diabetes mellitus patients: evaluation utilizing artificial intelligence processed coronary computed tomography angiography. Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry. Prediction of unobserved bifurcation by unsupervised extraction of slowly time-varying system parameter dynamics from time series using reservoir computing. Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost. Heuristic machine learning approaches for identifying phishing threats across web and email platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1