{"title":"固定狨猴大脑中区域体积变化与水扩散之间的关系:体内与体外比较。","authors":"Daisuke Yoshimaru, Tomokazu Tsurugizawa, Naoya Hayashi, Junichi Hata, Shuhei Shibukawa, Kei Hagiya, Hinako Oshiro, Noriyuki Kishi, Kazuhiro Saito, Hideyuki Okano, Hirotaka James Okano","doi":"10.1038/s41598-024-78246-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison.\",\"authors\":\"Daisuke Yoshimaru, Tomokazu Tsurugizawa, Naoya Hayashi, Junichi Hata, Shuhei Shibukawa, Kei Hagiya, Hinako Oshiro, Noriyuki Kishi, Kazuhiro Saito, Hideyuki Okano, Hirotaka James Okano\",\"doi\":\"10.1038/s41598-024-78246-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-78246-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78246-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison.
Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.