固定狨猴大脑中区域体积变化与水扩散之间的关系:体内与体外比较。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-06 DOI:10.1038/s41598-024-78246-0
Daisuke Yoshimaru, Tomokazu Tsurugizawa, Naoya Hayashi, Junichi Hata, Shuhei Shibukawa, Kei Hagiya, Hinako Oshiro, Noriyuki Kishi, Kazuhiro Saito, Hideyuki Okano, Hirotaka James Okano
{"title":"固定狨猴大脑中区域体积变化与水扩散之间的关系:体内与体外比较。","authors":"Daisuke Yoshimaru, Tomokazu Tsurugizawa, Naoya Hayashi, Junichi Hata, Shuhei Shibukawa, Kei Hagiya, Hinako Oshiro, Noriyuki Kishi, Kazuhiro Saito, Hideyuki Okano, Hirotaka James Okano","doi":"10.1038/s41598-024-78246-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison.\",\"authors\":\"Daisuke Yoshimaru, Tomokazu Tsurugizawa, Naoya Hayashi, Junichi Hata, Shuhei Shibukawa, Kei Hagiya, Hinako Oshiro, Noriyuki Kishi, Kazuhiro Saito, Hideyuki Okano, Hirotaka James Okano\",\"doi\":\"10.1038/s41598-024-78246-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-78246-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78246-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑的体外研究通常被用作神经科学的实验系统。一般来说,用于体外磁共振成像研究的大脑通常用多聚甲醛固定,以保存分子结构并防止组织在长期储存过程中受到破坏。因此,固定脑组织会导致微观结构变化和脑容量减少。因此,本研究的目的是利用同一个体的体内和体外大脑,研究脑容量和微结构变化对普通狨猴脑中水分子受限扩散的区域影响。我们使用 9.4T 磁共振成像技术,并比较了体内和体外大脑的 T2 加权图像和扩散加权成像(DWI)数据,研究了 12 只普通狨猴脑容量和水分子扩散的变化。我们比较了体内和体外大脑中白质和灰质的分数各向异性、平均扩散率、AD(轴向扩散率)和径向扩散率值。我们观察到,AD 与灰质区域体积变化的相关性最强。结果表明,AD 与脑容量变化之间存在很强的相关性。通过比较同一个人的体内和体外大脑,我们发现灌注固定对大脑微观结构和体积变化的局部影响与大脑内水分子受限扩散的改变之间存在显著的相关性。这些发现为了解狨猴大脑组织固定、大脑结构和水扩散特性之间的复杂关系提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison.

Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Floods of Egypt's Nile in the 21st century. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1