Miao Miao, Yonghong Ma, Jiao Tan, Renjuan Chen, Ke Men
{"title":"基于 SARS-CoV-2 基因组多样性提高 COVID-19 严重程度的可预测性和可解释性:一项包含四年数据的综合研究。","authors":"Miao Miao, Yonghong Ma, Jiao Tan, Renjuan Chen, Ke Men","doi":"10.1038/s41598-024-78493-1","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the end of the global Coronavirus Disease 2019 (COVID-19) pandemic, the risk factors for COVID-19 severity continue to be a pivotal area of research. Specifically, studying the impact of the genomic diversity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on COVID-19 severity is crucial for predicting severe outcomes. Therefore, this study aimed to investigate the impact of the SARS-CoV-2 genome sequence, genotype, patient age, gender, and vaccination status on the severity of COVID-19, and to develop accurate and robust prediction models. The training set (n = 12,038), primary testing set (n = 4,006), and secondary testing set (n = 2,845) consist of SARS-CoV-2 genome sequences with patient information, which were obtained from Global Initiative on Sharing all Individual Data (GISAID) spanning over four years. Four machine learning methods were employed to construct prediction models. By extracting SARS-CoV-2 genomic features, optimizing model parameters, and integrating models, this study improved the prediction accuracy. Furthermore, Shapley Additive exPlanes (SHAP) was applied to analyze the interpretability of the model and to identify risk factors, providing insights for the management of severe cases. The proposed ensemble model achieved an F-score of 88.842% and an Area Under the Curve (AUC) of 0.956 on the global testing dataset. In addition to factors such as patient age, gender, and vaccination status, over 40 amino acid site mutation characteristics were identified to have a significant impact on the severity of COVID-19. This work has the potential to facilitate the early identification of COVID-19 patients with high risks of severe illness, thus effectively reducing the rates of severe cases and mortality.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced predictability and interpretability of COVID-19 severity based on SARS-CoV-2 genomic diversity: a comprehensive study encompassing four years of data.\",\"authors\":\"Miao Miao, Yonghong Ma, Jiao Tan, Renjuan Chen, Ke Men\",\"doi\":\"10.1038/s41598-024-78493-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the end of the global Coronavirus Disease 2019 (COVID-19) pandemic, the risk factors for COVID-19 severity continue to be a pivotal area of research. Specifically, studying the impact of the genomic diversity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on COVID-19 severity is crucial for predicting severe outcomes. Therefore, this study aimed to investigate the impact of the SARS-CoV-2 genome sequence, genotype, patient age, gender, and vaccination status on the severity of COVID-19, and to develop accurate and robust prediction models. The training set (n = 12,038), primary testing set (n = 4,006), and secondary testing set (n = 2,845) consist of SARS-CoV-2 genome sequences with patient information, which were obtained from Global Initiative on Sharing all Individual Data (GISAID) spanning over four years. Four machine learning methods were employed to construct prediction models. By extracting SARS-CoV-2 genomic features, optimizing model parameters, and integrating models, this study improved the prediction accuracy. Furthermore, Shapley Additive exPlanes (SHAP) was applied to analyze the interpretability of the model and to identify risk factors, providing insights for the management of severe cases. The proposed ensemble model achieved an F-score of 88.842% and an Area Under the Curve (AUC) of 0.956 on the global testing dataset. In addition to factors such as patient age, gender, and vaccination status, over 40 amino acid site mutation characteristics were identified to have a significant impact on the severity of COVID-19. This work has the potential to facilitate the early identification of COVID-19 patients with high risks of severe illness, thus effectively reducing the rates of severe cases and mortality.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-78493-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78493-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhanced predictability and interpretability of COVID-19 severity based on SARS-CoV-2 genomic diversity: a comprehensive study encompassing four years of data.
Despite the end of the global Coronavirus Disease 2019 (COVID-19) pandemic, the risk factors for COVID-19 severity continue to be a pivotal area of research. Specifically, studying the impact of the genomic diversity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on COVID-19 severity is crucial for predicting severe outcomes. Therefore, this study aimed to investigate the impact of the SARS-CoV-2 genome sequence, genotype, patient age, gender, and vaccination status on the severity of COVID-19, and to develop accurate and robust prediction models. The training set (n = 12,038), primary testing set (n = 4,006), and secondary testing set (n = 2,845) consist of SARS-CoV-2 genome sequences with patient information, which were obtained from Global Initiative on Sharing all Individual Data (GISAID) spanning over four years. Four machine learning methods were employed to construct prediction models. By extracting SARS-CoV-2 genomic features, optimizing model parameters, and integrating models, this study improved the prediction accuracy. Furthermore, Shapley Additive exPlanes (SHAP) was applied to analyze the interpretability of the model and to identify risk factors, providing insights for the management of severe cases. The proposed ensemble model achieved an F-score of 88.842% and an Area Under the Curve (AUC) of 0.956 on the global testing dataset. In addition to factors such as patient age, gender, and vaccination status, over 40 amino acid site mutation characteristics were identified to have a significant impact on the severity of COVID-19. This work has the potential to facilitate the early identification of COVID-19 patients with high risks of severe illness, thus effectively reducing the rates of severe cases and mortality.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.