Antonio Italiano, Ernesto Amato, Daniele Pistone, Lucrezia Auditore
{"title":"关于伴随β衰变的内部轫致辐射及其在放射源应用中的潜在意义。","authors":"Antonio Italiano, Ernesto Amato, Daniele Pistone, Lucrezia Auditore","doi":"10.1088/1361-6633/ad8f43","DOIUrl":null,"url":null,"abstract":"<p><p>An in-depth analysis of the decay process for<i>β</i>-emitting radionuclides highlights, for some of them, the existence of high-order effects usually not taken into account in literature as considered negligible in terms of energy and yield, and referred to as Internal Bremsstrahlung (IB). This set of<i>β</i>-radionuclides presents, besides their<i>β</i>spectrum, a continuous<i>γ</i>emission due to the Coulomb field braking action on the emitted electron following the decaying nucleus. In this work, we review the theoretical and experimental studies on the IB process focusing on its actual importance for the pure<i>β</i>emitters. It emerges that there is no satisfactory model able to reproduce the experimental IB distribution for most of the investigated beta emitters and the several measurements are sometimes at odds with each other. Moreover, as recently demonstrated, the IB process can give a relevant contribution to the physics of beta emitters thus requiring its inclusion in the physics of the beta decay. A discussion on the importance of considering IB process in both applicative fields such as nuclear medicine, industrial applications, and research or calibration laboratories, and in other relevant fields of particle physics or astrophysics, such as the research on dark matter or neutrino mass, is presented.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the internal bremsstrahlung accompanying<i>β</i>-decay and its potential relevance in the application of radioactive sources.\",\"authors\":\"Antonio Italiano, Ernesto Amato, Daniele Pistone, Lucrezia Auditore\",\"doi\":\"10.1088/1361-6633/ad8f43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An in-depth analysis of the decay process for<i>β</i>-emitting radionuclides highlights, for some of them, the existence of high-order effects usually not taken into account in literature as considered negligible in terms of energy and yield, and referred to as Internal Bremsstrahlung (IB). This set of<i>β</i>-radionuclides presents, besides their<i>β</i>spectrum, a continuous<i>γ</i>emission due to the Coulomb field braking action on the emitted electron following the decaying nucleus. In this work, we review the theoretical and experimental studies on the IB process focusing on its actual importance for the pure<i>β</i>emitters. It emerges that there is no satisfactory model able to reproduce the experimental IB distribution for most of the investigated beta emitters and the several measurements are sometimes at odds with each other. Moreover, as recently demonstrated, the IB process can give a relevant contribution to the physics of beta emitters thus requiring its inclusion in the physics of the beta decay. A discussion on the importance of considering IB process in both applicative fields such as nuclear medicine, industrial applications, and research or calibration laboratories, and in other relevant fields of particle physics or astrophysics, such as the research on dark matter or neutrino mass, is presented.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ad8f43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad8f43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the internal bremsstrahlung accompanyingβ-decay and its potential relevance in the application of radioactive sources.
An in-depth analysis of the decay process forβ-emitting radionuclides highlights, for some of them, the existence of high-order effects usually not taken into account in literature as considered negligible in terms of energy and yield, and referred to as Internal Bremsstrahlung (IB). This set ofβ-radionuclides presents, besides theirβspectrum, a continuousγemission due to the Coulomb field braking action on the emitted electron following the decaying nucleus. In this work, we review the theoretical and experimental studies on the IB process focusing on its actual importance for the pureβemitters. It emerges that there is no satisfactory model able to reproduce the experimental IB distribution for most of the investigated beta emitters and the several measurements are sometimes at odds with each other. Moreover, as recently demonstrated, the IB process can give a relevant contribution to the physics of beta emitters thus requiring its inclusion in the physics of the beta decay. A discussion on the importance of considering IB process in both applicative fields such as nuclear medicine, industrial applications, and research or calibration laboratories, and in other relevant fields of particle physics or astrophysics, such as the research on dark matter or neutrino mass, is presented.