预测非创伤性重症监护室患者接受输血可能性的稳健元模型。

Health data science Pub Date : 2024-11-06 eCollection Date: 2024-01-01 DOI:10.34133/hds.0197
Alireza Rafiei, Ronald Moore, Tilendra Choudhary, Curtis Marshall, Geoffrey Smith, John D Roback, Ravi M Patel, Cassandra D Josephson, Rishikesan Kamaleswaran
{"title":"预测非创伤性重症监护室患者接受输血可能性的稳健元模型。","authors":"Alireza Rafiei, Ronald Moore, Tilendra Choudhary, Curtis Marshall, Geoffrey Smith, John D Roback, Ravi M Patel, Cassandra D Josephson, Rishikesan Kamaleswaran","doi":"10.34133/hds.0197","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Blood transfusions, crucial in managing anemia and coagulopathy in intensive care unit (ICU) settings, require accurate prediction for effective resource allocation and patient risk assessment. However, existing clinical decision support systems have primarily targeted a particular patient demographic with unique medical conditions and focused on a single type of blood transfusion. This study aims to develop an advanced machine learning-based model to predict the probability of transfusion necessity over the next 24 h for a diverse range of non-traumatic ICU patients. <b>Methods:</b> We conducted a retrospective cohort study on 72,072 non-traumatic adult ICU patients admitted to a high-volume US metropolitan academic hospital between 2016 and 2020. We developed a meta-learner and various machine learning models to serve as predictors, training them annually with 4-year data and evaluating on the fifth, unseen year, iteratively over 5 years. <b>Results:</b> The experimental results revealed that the meta-model surpasses the other models in different development scenarios. It achieved notable performance metrics, including an area under the receiver operating characteristic curve of 0.97, an accuracy rate of 0.93, and an F1 score of 0.89 in the best scenario. <b>Conclusion:</b> This study pioneers the use of machine learning models for predicting the likelihood of blood transfusion receipt in a diverse cohort of critically ill patients. The findings of this evaluation confirm that our model not only effectively predicts transfusion reception but also identifies key biomarkers for making transfusion decisions.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"4 ","pages":"0197"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients.\",\"authors\":\"Alireza Rafiei, Ronald Moore, Tilendra Choudhary, Curtis Marshall, Geoffrey Smith, John D Roback, Ravi M Patel, Cassandra D Josephson, Rishikesan Kamaleswaran\",\"doi\":\"10.34133/hds.0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Blood transfusions, crucial in managing anemia and coagulopathy in intensive care unit (ICU) settings, require accurate prediction for effective resource allocation and patient risk assessment. However, existing clinical decision support systems have primarily targeted a particular patient demographic with unique medical conditions and focused on a single type of blood transfusion. This study aims to develop an advanced machine learning-based model to predict the probability of transfusion necessity over the next 24 h for a diverse range of non-traumatic ICU patients. <b>Methods:</b> We conducted a retrospective cohort study on 72,072 non-traumatic adult ICU patients admitted to a high-volume US metropolitan academic hospital between 2016 and 2020. We developed a meta-learner and various machine learning models to serve as predictors, training them annually with 4-year data and evaluating on the fifth, unseen year, iteratively over 5 years. <b>Results:</b> The experimental results revealed that the meta-model surpasses the other models in different development scenarios. It achieved notable performance metrics, including an area under the receiver operating characteristic curve of 0.97, an accuracy rate of 0.93, and an F1 score of 0.89 in the best scenario. <b>Conclusion:</b> This study pioneers the use of machine learning models for predicting the likelihood of blood transfusion receipt in a diverse cohort of critically ill patients. The findings of this evaluation confirm that our model not only effectively predicts transfusion reception but also identifies key biomarkers for making transfusion decisions.</p>\",\"PeriodicalId\":73207,\"journal\":{\"name\":\"Health data science\",\"volume\":\"4 \",\"pages\":\"0197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/hds.0197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:输血是重症监护病房(ICU)中治疗贫血和凝血功能障碍的关键,需要准确的预测才能进行有效的资源分配和患者风险评估。然而,现有的临床决策支持系统主要针对具有独特医疗条件的特定患者人群,并侧重于单一类型的输血。本研究旨在开发一种先进的基于机器学习的模型,以预测各种非创伤性重症监护病房患者在未来 24 小时内输血的必要性概率。研究方法我们对 2016 年至 2020 年间入住美国一家大城市学术医院的 72,072 名非创伤性成人 ICU 患者进行了回顾性队列研究。我们开发了元学习器和各种机器学习模型作为预测指标,每年用 4 年的数据对其进行训练,并在 5 年内对未见过的第五年进行评估。结果实验结果表明,元模型在不同的开发场景中都超越了其他模型。它取得了显著的性能指标,包括接收器工作特征曲线下面积为 0.97,准确率为 0.93,在最佳情况下的 F1 分数为 0.89。结论这项研究开创性地使用机器学习模型来预测不同危重病人接受输血的可能性。评估结果证实,我们的模型不仅能有效预测输血接收情况,还能识别关键生物标志物,从而做出输血决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients.

Background: Blood transfusions, crucial in managing anemia and coagulopathy in intensive care unit (ICU) settings, require accurate prediction for effective resource allocation and patient risk assessment. However, existing clinical decision support systems have primarily targeted a particular patient demographic with unique medical conditions and focused on a single type of blood transfusion. This study aims to develop an advanced machine learning-based model to predict the probability of transfusion necessity over the next 24 h for a diverse range of non-traumatic ICU patients. Methods: We conducted a retrospective cohort study on 72,072 non-traumatic adult ICU patients admitted to a high-volume US metropolitan academic hospital between 2016 and 2020. We developed a meta-learner and various machine learning models to serve as predictors, training them annually with 4-year data and evaluating on the fifth, unseen year, iteratively over 5 years. Results: The experimental results revealed that the meta-model surpasses the other models in different development scenarios. It achieved notable performance metrics, including an area under the receiver operating characteristic curve of 0.97, an accuracy rate of 0.93, and an F1 score of 0.89 in the best scenario. Conclusion: This study pioneers the use of machine learning models for predicting the likelihood of blood transfusion receipt in a diverse cohort of critically ill patients. The findings of this evaluation confirm that our model not only effectively predicts transfusion reception but also identifies key biomarkers for making transfusion decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Multi-Modal CLIP-Informed Protein Editing. The Burden of Type 2 Diabetes in Adolescents and Young Adults in China: A Secondary Analysis from the Global Burden of Disease Study 2021. Federated Learning in Healthcare: A Benchmark Comparison of Engineering and Statistical Approaches for Structured Data Analysis. Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients. Survival Disparities among Cancer Patients Based on Mobility Patterns: A Population-Based Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1