用于合成保险数据的变异自动编码器

Charlotte Jamotton, Donatien Hainaut
{"title":"用于合成保险数据的变异自动编码器","authors":"Charlotte Jamotton,&nbsp;Donatien Hainaut","doi":"10.1016/j.iswa.2024.200455","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the application of Variational AutoEncoders (VAEs) to insurance data. Previous research has demonstrated the successful implementation of generative models, especially VAEs, across various domains, such as image recognition, text classification, and recommender systems. However, their application to insurance data, particularly to heterogeneous insurance portfolios with mixed continuous and discrete attributes, remains unexplored. This study introduces novel insights into utilising VAEs for unsupervised learning tasks in actuarial science, including dimension reduction and synthetic data generation. We propose a VAE model with a quantile transformation for continuous (latent) variables, a reconstruction loss that combines categorical cross-entropy and mean squared error, and a KL divergence-based regularisation term. Our VAE model’s architecture circumvents the need to pre-train and fine-tune a neural network to encode categorical variables into <span><math><mi>n</mi></math></span>-dimensional representative vectors within a continuous vector space of dimension <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We assess our VAE’s ability to reconstruct complex insurance data and generate synthetic insurance policies using a motor portfolio. Our experimental results and analysis highlight the potential of VAEs in addressing challenges related to data availability in the insurance industry.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200455"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational AutoEncoder for synthetic insurance data\",\"authors\":\"Charlotte Jamotton,&nbsp;Donatien Hainaut\",\"doi\":\"10.1016/j.iswa.2024.200455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article explores the application of Variational AutoEncoders (VAEs) to insurance data. Previous research has demonstrated the successful implementation of generative models, especially VAEs, across various domains, such as image recognition, text classification, and recommender systems. However, their application to insurance data, particularly to heterogeneous insurance portfolios with mixed continuous and discrete attributes, remains unexplored. This study introduces novel insights into utilising VAEs for unsupervised learning tasks in actuarial science, including dimension reduction and synthetic data generation. We propose a VAE model with a quantile transformation for continuous (latent) variables, a reconstruction loss that combines categorical cross-entropy and mean squared error, and a KL divergence-based regularisation term. Our VAE model’s architecture circumvents the need to pre-train and fine-tune a neural network to encode categorical variables into <span><math><mi>n</mi></math></span>-dimensional representative vectors within a continuous vector space of dimension <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We assess our VAE’s ability to reconstruct complex insurance data and generate synthetic insurance policies using a motor portfolio. Our experimental results and analysis highlight the potential of VAEs in addressing challenges related to data availability in the insurance industry.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"24 \",\"pages\":\"Article 200455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了变异自动编码器(VAE)在保险数据中的应用。以往的研究表明,生成模型,尤其是变异自动编码器,已在图像识别、文本分类和推荐系统等多个领域得到成功应用。然而,它们在保险数据中的应用,尤其是在具有连续和离散混合属性的异构保险组合中的应用,仍有待探索。本研究介绍了将 VAE 用于精算科学中的无监督学习任务的新见解,包括降维和合成数据生成。我们提出了一种 VAE 模型,该模型对连续(潜伏)变量进行了量化转换,结合了分类交叉熵和均方误差的重构损失,以及基于 KL 发散的正则化项。我们的 VAE 模型的架构避免了预先训练和微调神经网络的需要,可将分类变量编码为 Rn 维度连续向量空间中的 n 维代表向量。我们评估了 VAE 重构复杂保险数据的能力,并使用汽车组合生成合成保单。我们的实验结果和分析凸显了 VAE 在应对保险业数据可用性相关挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational AutoEncoder for synthetic insurance data
This article explores the application of Variational AutoEncoders (VAEs) to insurance data. Previous research has demonstrated the successful implementation of generative models, especially VAEs, across various domains, such as image recognition, text classification, and recommender systems. However, their application to insurance data, particularly to heterogeneous insurance portfolios with mixed continuous and discrete attributes, remains unexplored. This study introduces novel insights into utilising VAEs for unsupervised learning tasks in actuarial science, including dimension reduction and synthetic data generation. We propose a VAE model with a quantile transformation for continuous (latent) variables, a reconstruction loss that combines categorical cross-entropy and mean squared error, and a KL divergence-based regularisation term. Our VAE model’s architecture circumvents the need to pre-train and fine-tune a neural network to encode categorical variables into n-dimensional representative vectors within a continuous vector space of dimension Rn. We assess our VAE’s ability to reconstruct complex insurance data and generate synthetic insurance policies using a motor portfolio. Our experimental results and analysis highlight the potential of VAEs in addressing challenges related to data availability in the insurance industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1