具有近似函数输入的高斯过程的协方差参数估计

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-10-28 DOI:10.1016/j.jmva.2024.105380
Lucas Reding , Andrés F. López-Lopera , François Bachoc
{"title":"具有近似函数输入的高斯过程的协方差参数估计","authors":"Lucas Reding ,&nbsp;Andrés F. López-Lopera ,&nbsp;François Bachoc","doi":"10.1016/j.jmva.2024.105380","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of covariance parameter estimation for Gaussian processes with functional inputs. Our study addresses scenarios where exact functional inputs are available and where only approximate versions of these functions are accessible. From an increasing-domain asymptotics perspective, we first establish the asymptotic consistency and normality of the maximum likelihood estimator for the exact inputs. Then, by accounting for approximation errors, we certify the robustness of practical implementations that rely on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality continue to hold when the approximation error becomes negligible, a condition often met as the number of samples or basis functions becomes large. To ensure broad applicability, our asymptotic analysis is conducted for any Hilbert space of inputs. Our findings are illustrated through analytical examples, including the case of non-randomly perturbed grids, as well as several numerical illustrations.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance parameter estimation of Gaussian processes with approximated functional inputs\",\"authors\":\"Lucas Reding ,&nbsp;Andrés F. López-Lopera ,&nbsp;François Bachoc\",\"doi\":\"10.1016/j.jmva.2024.105380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of covariance parameter estimation for Gaussian processes with functional inputs. Our study addresses scenarios where exact functional inputs are available and where only approximate versions of these functions are accessible. From an increasing-domain asymptotics perspective, we first establish the asymptotic consistency and normality of the maximum likelihood estimator for the exact inputs. Then, by accounting for approximation errors, we certify the robustness of practical implementations that rely on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality continue to hold when the approximation error becomes negligible, a condition often met as the number of samples or basis functions becomes large. To ensure broad applicability, our asymptotic analysis is conducted for any Hilbert space of inputs. Our findings are illustrated through analytical examples, including the case of non-randomly perturbed grids, as well as several numerical illustrations.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000873\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000873","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有函数输入的高斯过程的协方差参数估计问题。我们的研究针对的是有精确函数输入和只能获得这些函数近似版本的情况。从增域渐近的角度,我们首先建立了精确输入的最大似然估计器的渐近一致性和正态性。然后,通过考虑近似误差,我们证明了依赖传统抽样方法或函数基础投影的实际实现方法的稳健性。从广义上讲,当近似误差变得可以忽略不计时,一致性和正态性都将继续保持,而当样本或基函数的数量变得很大时,这一条件往往会得到满足。为了确保广泛的适用性,我们对任何输入的希尔伯特空间都进行了渐近分析。我们的研究结果通过分析示例(包括非随机扰动网格的情况)以及若干数值示例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covariance parameter estimation of Gaussian processes with approximated functional inputs
We consider the problem of covariance parameter estimation for Gaussian processes with functional inputs. Our study addresses scenarios where exact functional inputs are available and where only approximate versions of these functions are accessible. From an increasing-domain asymptotics perspective, we first establish the asymptotic consistency and normality of the maximum likelihood estimator for the exact inputs. Then, by accounting for approximation errors, we certify the robustness of practical implementations that rely on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality continue to hold when the approximation error becomes negligible, a condition often met as the number of samples or basis functions becomes large. To ensure broad applicability, our asymptotic analysis is conducted for any Hilbert space of inputs. Our findings are illustrated through analytical examples, including the case of non-randomly perturbed grids, as well as several numerical illustrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data On the exact region determined by Spearman’s ρ and Blest’s measure of rank correlation ν for bivariate extreme-value copulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1