Kelvin A. Sanoja-López, Dayanara D. Salinas-Echeverría, Rafael Luque
{"title":"呋喃类化合物的连续流动增值:从 5-羟甲基糠醛脱羰基到糠醇转化为有价值的氧化偶联产物","authors":"Kelvin A. Sanoja-López, Dayanara D. Salinas-Echeverría, Rafael Luque","doi":"10.1016/j.cattod.2024.115109","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the tandem multi-step valorization of 5-hydroxymethylfurfural (HMF) to valuable furanic derivatives using a catalytic process with 10 % Pd/C in continuous flow under mild operating conditions. The results demonstrate the selective conversion of 5-HMF to furfuryl alcohol with yields exceeding 99 % under mild conditions and short times of reaction, subsequently followed by the conversion of furfuryl alcohol to valuable products (imines) via oxidative coupling. This continuous flow approach offers several advantages over batch methods, including the ability to achieve high yields with precise control of parameters such as temperature, pressure, and flow rate, thereby facilitating process optimization and scalability.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115109"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Flow valorization of furanics: From decarbonylation of 5-Hydroxymethyl-furfural to furfuryl alcohol conversion into valuable oxidative coupling products\",\"authors\":\"Kelvin A. Sanoja-López, Dayanara D. Salinas-Echeverría, Rafael Luque\",\"doi\":\"10.1016/j.cattod.2024.115109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the tandem multi-step valorization of 5-hydroxymethylfurfural (HMF) to valuable furanic derivatives using a catalytic process with 10 % Pd/C in continuous flow under mild operating conditions. The results demonstrate the selective conversion of 5-HMF to furfuryl alcohol with yields exceeding 99 % under mild conditions and short times of reaction, subsequently followed by the conversion of furfuryl alcohol to valuable products (imines) via oxidative coupling. This continuous flow approach offers several advantages over batch methods, including the ability to achieve high yields with precise control of parameters such as temperature, pressure, and flow rate, thereby facilitating process optimization and scalability.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"446 \",\"pages\":\"Article 115109\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124006035\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006035","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Continuous Flow valorization of furanics: From decarbonylation of 5-Hydroxymethyl-furfural to furfuryl alcohol conversion into valuable oxidative coupling products
This study focuses on the tandem multi-step valorization of 5-hydroxymethylfurfural (HMF) to valuable furanic derivatives using a catalytic process with 10 % Pd/C in continuous flow under mild operating conditions. The results demonstrate the selective conversion of 5-HMF to furfuryl alcohol with yields exceeding 99 % under mild conditions and short times of reaction, subsequently followed by the conversion of furfuryl alcohol to valuable products (imines) via oxidative coupling. This continuous flow approach offers several advantages over batch methods, including the ability to achieve high yields with precise control of parameters such as temperature, pressure, and flow rate, thereby facilitating process optimization and scalability.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.