Xi Cheng , Jieyu Yang , Zhiyong Han , Guozhong Shi , Deng Pan , Likang Meng , Zhuojun Zeng , Zhanfeng Shen
{"title":"优化农村垃圾管理:利用高分辨率遥感和地理信息系统实现高效收集和路线规划","authors":"Xi Cheng , Jieyu Yang , Zhiyong Han , Guozhong Shi , Deng Pan , Likang Meng , Zhuojun Zeng , Zhanfeng Shen","doi":"10.1016/j.jag.2024.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate assessment of distribution patterns and dynamic insights into rural populations is pivotal for comprehending domestic waste generation, recycling, and transportation in rural territories. Given that the dispersion of rural inhabitants exhibits minimal variation and maintains stability, this research endeavors to establish a pragmatic model for rural domestic waste collection and routing, leveraging the capabilities of very high-resolution remote sensing combined with geographic information system (GIS) techniques. Specifically, the Dilated LinkNet model was employed to discern features such as buildings, roads, water bodies, farmlands, and forests from the high-resolution remote sensing imagery. A novel multiple K-means clustering approach was devised for building segmentation. Within these clusters, an assortment of spatial regulations and evaluations facilitated the judicious selection of environmentally-conscious waste collection sites (WCSs). The Pointer Network, augmented with reinforcement learning, executed a traveling salesman analysis on these chosen WCSs, yielding the optimal collection trajectory. Validated in Huangtu Town, a quintessential rural region in China, our model manifested superior recognition precision, recording IoU accuracies of 0.902, 0.926, 0.933, 0.891, and 0.849 for buildings, roads, water bodies, farmlands, and forests respectively. Notably, when compared to our field survey data, the optimized daily collection route in a rural context decreased from 256.40 km before optimization to 140.44 km, reflecting a substantial reduction of 45.23% in total distance. This study furnishes an effective model that relies solely on information from remote-sensing images for efficient rural waste collection and extends invaluable insights to planners and administrators in the realm of rural and township waste management.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104219"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing rural waste management: Leveraging high-resolution remote sensing and GIS for efficient collection and routing\",\"authors\":\"Xi Cheng , Jieyu Yang , Zhiyong Han , Guozhong Shi , Deng Pan , Likang Meng , Zhuojun Zeng , Zhanfeng Shen\",\"doi\":\"10.1016/j.jag.2024.104219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate assessment of distribution patterns and dynamic insights into rural populations is pivotal for comprehending domestic waste generation, recycling, and transportation in rural territories. Given that the dispersion of rural inhabitants exhibits minimal variation and maintains stability, this research endeavors to establish a pragmatic model for rural domestic waste collection and routing, leveraging the capabilities of very high-resolution remote sensing combined with geographic information system (GIS) techniques. Specifically, the Dilated LinkNet model was employed to discern features such as buildings, roads, water bodies, farmlands, and forests from the high-resolution remote sensing imagery. A novel multiple K-means clustering approach was devised for building segmentation. Within these clusters, an assortment of spatial regulations and evaluations facilitated the judicious selection of environmentally-conscious waste collection sites (WCSs). The Pointer Network, augmented with reinforcement learning, executed a traveling salesman analysis on these chosen WCSs, yielding the optimal collection trajectory. Validated in Huangtu Town, a quintessential rural region in China, our model manifested superior recognition precision, recording IoU accuracies of 0.902, 0.926, 0.933, 0.891, and 0.849 for buildings, roads, water bodies, farmlands, and forests respectively. Notably, when compared to our field survey data, the optimized daily collection route in a rural context decreased from 256.40 km before optimization to 140.44 km, reflecting a substantial reduction of 45.23% in total distance. This study furnishes an effective model that relies solely on information from remote-sensing images for efficient rural waste collection and extends invaluable insights to planners and administrators in the realm of rural and township waste management.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"135 \",\"pages\":\"Article 104219\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Optimizing rural waste management: Leveraging high-resolution remote sensing and GIS for efficient collection and routing
Accurate assessment of distribution patterns and dynamic insights into rural populations is pivotal for comprehending domestic waste generation, recycling, and transportation in rural territories. Given that the dispersion of rural inhabitants exhibits minimal variation and maintains stability, this research endeavors to establish a pragmatic model for rural domestic waste collection and routing, leveraging the capabilities of very high-resolution remote sensing combined with geographic information system (GIS) techniques. Specifically, the Dilated LinkNet model was employed to discern features such as buildings, roads, water bodies, farmlands, and forests from the high-resolution remote sensing imagery. A novel multiple K-means clustering approach was devised for building segmentation. Within these clusters, an assortment of spatial regulations and evaluations facilitated the judicious selection of environmentally-conscious waste collection sites (WCSs). The Pointer Network, augmented with reinforcement learning, executed a traveling salesman analysis on these chosen WCSs, yielding the optimal collection trajectory. Validated in Huangtu Town, a quintessential rural region in China, our model manifested superior recognition precision, recording IoU accuracies of 0.902, 0.926, 0.933, 0.891, and 0.849 for buildings, roads, water bodies, farmlands, and forests respectively. Notably, when compared to our field survey data, the optimized daily collection route in a rural context decreased from 256.40 km before optimization to 140.44 km, reflecting a substantial reduction of 45.23% in total distance. This study furnishes an effective model that relies solely on information from remote-sensing images for efficient rural waste collection and extends invaluable insights to planners and administrators in the realm of rural and township waste management.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.