Shuangshuang Jin , Shengchao Yang , Xingming Zhang
{"title":"开槽钢板剪力墙与边界框架相互作用的理论和实验研究","authors":"Shuangshuang Jin , Shengchao Yang , Xingming Zhang","doi":"10.1016/j.jcsr.2024.109132","DOIUrl":null,"url":null,"abstract":"<div><div>The buckling-restrained steel plate shear wall with inclined slots (called Slotted-SPSW), composed of slotted steel plate, frame beams and columns, and out-of-plane constrained concrete panels. Premature failure of boundary frames may lead to insufficient performance of the Slotted-SPSW. To understand the interaction between the slotted steel plate and the boundary frame, the theoretical formula for calculating ultimate load-bearing capacity of the novel Slotted-SPSW is initially provided, and then internal forces in boundary columns are derived through theoretical analysis. Subsequently, a quasi-static experiment on a scale model with a ratio of 1:3 is conducted to examine the mechanical behavior and failure modes of the Slotted-SPSW under lateral forces. Finally, a comparison between the finite element simulation results for the frame columns and slotted steel plate and the experimental results is presented, verifying the accuracy of the theoretical formulas and finite element simulations. The research findings demonstrate that the novel Slotted-SPSW possesses exceptional load-bearing capacity, energy dissipation ability and ductility.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109132"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and experimental study on the interaction between slotted steel plate shear wall and boundary frame\",\"authors\":\"Shuangshuang Jin , Shengchao Yang , Xingming Zhang\",\"doi\":\"10.1016/j.jcsr.2024.109132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The buckling-restrained steel plate shear wall with inclined slots (called Slotted-SPSW), composed of slotted steel plate, frame beams and columns, and out-of-plane constrained concrete panels. Premature failure of boundary frames may lead to insufficient performance of the Slotted-SPSW. To understand the interaction between the slotted steel plate and the boundary frame, the theoretical formula for calculating ultimate load-bearing capacity of the novel Slotted-SPSW is initially provided, and then internal forces in boundary columns are derived through theoretical analysis. Subsequently, a quasi-static experiment on a scale model with a ratio of 1:3 is conducted to examine the mechanical behavior and failure modes of the Slotted-SPSW under lateral forces. Finally, a comparison between the finite element simulation results for the frame columns and slotted steel plate and the experimental results is presented, verifying the accuracy of the theoretical formulas and finite element simulations. The research findings demonstrate that the novel Slotted-SPSW possesses exceptional load-bearing capacity, energy dissipation ability and ductility.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"224 \",\"pages\":\"Article 109132\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24006825\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Theoretical and experimental study on the interaction between slotted steel plate shear wall and boundary frame
The buckling-restrained steel plate shear wall with inclined slots (called Slotted-SPSW), composed of slotted steel plate, frame beams and columns, and out-of-plane constrained concrete panels. Premature failure of boundary frames may lead to insufficient performance of the Slotted-SPSW. To understand the interaction between the slotted steel plate and the boundary frame, the theoretical formula for calculating ultimate load-bearing capacity of the novel Slotted-SPSW is initially provided, and then internal forces in boundary columns are derived through theoretical analysis. Subsequently, a quasi-static experiment on a scale model with a ratio of 1:3 is conducted to examine the mechanical behavior and failure modes of the Slotted-SPSW under lateral forces. Finally, a comparison between the finite element simulation results for the frame columns and slotted steel plate and the experimental results is presented, verifying the accuracy of the theoretical formulas and finite element simulations. The research findings demonstrate that the novel Slotted-SPSW possesses exceptional load-bearing capacity, energy dissipation ability and ductility.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.