用新的特征长度评估多边形截面风道和转角角为 0°的风道中完全展开的湍流摩擦系数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-11-06 DOI:10.1016/j.nucengdes.2024.113663
Son Nam-Jin, Kim RyongIl, Kim Hyo-Song, Yun Kumchol, O. Ju-Sung
{"title":"用新的特征长度评估多边形截面风道和转角角为 0°的风道中完全展开的湍流摩擦系数","authors":"Son Nam-Jin,&nbsp;Kim RyongIl,&nbsp;Kim Hyo-Song,&nbsp;Yun Kumchol,&nbsp;O. Ju-Sung","doi":"10.1016/j.nucengdes.2024.113663","DOIUrl":null,"url":null,"abstract":"<div><div>In estimating the friction coefficient of fully developed turbulent flow in a circular duct, the Blasius equation is often used. The hydraulic diameter is the characteristic length of the <em>Re</em> number used when mapping the non-circular duct section to the circular pipe section. We have newly defined the characteristic length of the <em>Re</em> number of the Blasius equation. The newly proposed characteristic length is wetted perimeter equivalent round diameter and the modified hydraulic diameter with minimum change of area and perimeter. Based on the new diameters, a method to estimate the turbulent friction coefficient of a fully developed isosceles.</div><div>triangular duct, regular polygon duct, and a duct with an edge angle of 0° is proposed and its accuracy is evaluated. The new characteristic lengths we propose are easy to calculate, provided that certain accuracy is achieved. Therefore, it is easily applicable to the estimation of friction coefficient of isosceles triangular ducts, regular polygonal ducts and corner angle 0° section ducts.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fully developed turbulent friction coefficient in polygonal section ducts and ducts with corner angle 0° by new characteristic lengths\",\"authors\":\"Son Nam-Jin,&nbsp;Kim RyongIl,&nbsp;Kim Hyo-Song,&nbsp;Yun Kumchol,&nbsp;O. Ju-Sung\",\"doi\":\"10.1016/j.nucengdes.2024.113663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In estimating the friction coefficient of fully developed turbulent flow in a circular duct, the Blasius equation is often used. The hydraulic diameter is the characteristic length of the <em>Re</em> number used when mapping the non-circular duct section to the circular pipe section. We have newly defined the characteristic length of the <em>Re</em> number of the Blasius equation. The newly proposed characteristic length is wetted perimeter equivalent round diameter and the modified hydraulic diameter with minimum change of area and perimeter. Based on the new diameters, a method to estimate the turbulent friction coefficient of a fully developed isosceles.</div><div>triangular duct, regular polygon duct, and a duct with an edge angle of 0° is proposed and its accuracy is evaluated. The new characteristic lengths we propose are easy to calculate, provided that certain accuracy is achieved. Therefore, it is easily applicable to the estimation of friction coefficient of isosceles triangular ducts, regular polygonal ducts and corner angle 0° section ducts.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007635\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007635","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在估算圆形管道中充分发展的湍流的摩擦系数时,通常使用布拉修斯方程。水力直径是将非圆形管道截面映射到圆形管道截面时使用的 Re 值的特征长度。我们重新定义了布拉修斯方程的 Re 值特征长度。新提出的特征长度是润湿周长等效圆直径以及面积和周长变化最小的修正水力直径。根据新直径,提出了一种估算完全展开的等腰三角形风管、规则多边形风管和边缘角为 0° 的风管的湍流摩擦系数的方法,并对其精度进行了评估。在达到一定精度的前提下,我们提出的新特征长度易于计算。因此,它很容易应用于等腰三角形风管、正多边形风管和边角为 0°截面风管的摩擦系数估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of fully developed turbulent friction coefficient in polygonal section ducts and ducts with corner angle 0° by new characteristic lengths
In estimating the friction coefficient of fully developed turbulent flow in a circular duct, the Blasius equation is often used. The hydraulic diameter is the characteristic length of the Re number used when mapping the non-circular duct section to the circular pipe section. We have newly defined the characteristic length of the Re number of the Blasius equation. The newly proposed characteristic length is wetted perimeter equivalent round diameter and the modified hydraulic diameter with minimum change of area and perimeter. Based on the new diameters, a method to estimate the turbulent friction coefficient of a fully developed isosceles.
triangular duct, regular polygon duct, and a duct with an edge angle of 0° is proposed and its accuracy is evaluated. The new characteristic lengths we propose are easy to calculate, provided that certain accuracy is achieved. Therefore, it is easily applicable to the estimation of friction coefficient of isosceles triangular ducts, regular polygonal ducts and corner angle 0° section ducts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1