GBMOD:颗粒球均值偏移离群点检测器

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-01 DOI:10.1016/j.patcog.2024.111115
Shitong Cheng , Xinyu Su , Baiyang Chen , Hongmei Chen , Dezhong Peng , Zhong Yuan
{"title":"GBMOD:颗粒球均值偏移离群点检测器","authors":"Shitong Cheng ,&nbsp;Xinyu Su ,&nbsp;Baiyang Chen ,&nbsp;Hongmei Chen ,&nbsp;Dezhong Peng ,&nbsp;Zhong Yuan","doi":"10.1016/j.patcog.2024.111115","DOIUrl":null,"url":null,"abstract":"<div><div>Outlier detection is a crucial data mining task involving identifying abnormal objects, errors, or emerging trends. Mean-shift-based outlier detection techniques evaluate the abnormality of an object by calculating the mean distance between the object and its <span><math><mi>k</mi></math></span>-nearest neighbors. However, in datasets with significant noise, the presence of noise in the <span><math><mi>k</mi></math></span>-nearest neighbors of some objects makes the model ineffective in detecting outliers. Additionally, the mean-shift outlier detection technique depends on finding the <span><math><mi>k</mi></math></span>-nearest neighbors of an object, which can be time-consuming. To address these issues, we propose a granular-ball computing-based mean-shift outlier detection method (GBMOD). Specifically, we first generate high-quality granular-balls to cover the data. By using the centers of granular-balls as anchors, the subsequent mean-shift process can effectively avoid the influence of noise points in the neighborhood. Then, outliers are detected based on the distance from the object to the displaced center of the granular-ball to which it belongs. Finally, the distance between the object and the shifted center of the granular-ball to which the object belongs is calculated, resulting in the outlier scores of objects. Subsequent experiments demonstrate the effectiveness, efficiency, and robustness of the method proposed in this paper.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111115"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GBMOD: A granular-ball mean-shift outlier detector\",\"authors\":\"Shitong Cheng ,&nbsp;Xinyu Su ,&nbsp;Baiyang Chen ,&nbsp;Hongmei Chen ,&nbsp;Dezhong Peng ,&nbsp;Zhong Yuan\",\"doi\":\"10.1016/j.patcog.2024.111115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Outlier detection is a crucial data mining task involving identifying abnormal objects, errors, or emerging trends. Mean-shift-based outlier detection techniques evaluate the abnormality of an object by calculating the mean distance between the object and its <span><math><mi>k</mi></math></span>-nearest neighbors. However, in datasets with significant noise, the presence of noise in the <span><math><mi>k</mi></math></span>-nearest neighbors of some objects makes the model ineffective in detecting outliers. Additionally, the mean-shift outlier detection technique depends on finding the <span><math><mi>k</mi></math></span>-nearest neighbors of an object, which can be time-consuming. To address these issues, we propose a granular-ball computing-based mean-shift outlier detection method (GBMOD). Specifically, we first generate high-quality granular-balls to cover the data. By using the centers of granular-balls as anchors, the subsequent mean-shift process can effectively avoid the influence of noise points in the neighborhood. Then, outliers are detected based on the distance from the object to the displaced center of the granular-ball to which it belongs. Finally, the distance between the object and the shifted center of the granular-ball to which the object belongs is calculated, resulting in the outlier scores of objects. Subsequent experiments demonstrate the effectiveness, efficiency, and robustness of the method proposed in this paper.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111115\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008665\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008665","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

离群点检测是一项重要的数据挖掘任务,涉及识别异常对象、错误或新趋势。基于均值移动的离群点检测技术通过计算对象与其 k 近邻之间的平均距离来评估对象的异常性。然而,在存在大量噪声的数据集中,一些对象的 k 近邻中存在噪声,使得该模型无法有效检测异常值。此外,均值偏移离群点检测技术依赖于找到对象的 k 个近邻,这可能非常耗时。为了解决这些问题,我们提出了一种基于颗粒球计算的均值偏移离群点检测方法(GBMOD)。具体来说,我们首先生成高质量的颗粒球来覆盖数据。通过使用颗粒球的中心作为锚点,随后的均值转移过程可以有效避免邻域中噪声点的影响。然后,根据对象到其所属颗粒球的位移中心的距离来检测异常值。最后,计算对象与所属颗粒球的移位中心之间的距离,得出对象的离群值。随后的实验证明了本文所提方法的有效性、高效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GBMOD: A granular-ball mean-shift outlier detector
Outlier detection is a crucial data mining task involving identifying abnormal objects, errors, or emerging trends. Mean-shift-based outlier detection techniques evaluate the abnormality of an object by calculating the mean distance between the object and its k-nearest neighbors. However, in datasets with significant noise, the presence of noise in the k-nearest neighbors of some objects makes the model ineffective in detecting outliers. Additionally, the mean-shift outlier detection technique depends on finding the k-nearest neighbors of an object, which can be time-consuming. To address these issues, we propose a granular-ball computing-based mean-shift outlier detection method (GBMOD). Specifically, we first generate high-quality granular-balls to cover the data. By using the centers of granular-balls as anchors, the subsequent mean-shift process can effectively avoid the influence of noise points in the neighborhood. Then, outliers are detected based on the distance from the object to the displaced center of the granular-ball to which it belongs. Finally, the distance between the object and the shifted center of the granular-ball to which the object belongs is calculated, resulting in the outlier scores of objects. Subsequent experiments demonstrate the effectiveness, efficiency, and robustness of the method proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1