Amit Kanjilal , Krishan Kant Singh , Awadhesh Kumar
{"title":"伽马辐射诱导的胺功能化聚缩水甘油酯接枝聚丙烯无纺布的优化合成及其对含水铅(II)的吸附行为","authors":"Amit Kanjilal , Krishan Kant Singh , Awadhesh Kumar","doi":"10.1016/j.ces.2024.120886","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive optimization of the functionalization of polypropylene (PP) non-woven fabric through gamma irradiation-induced graft polymerization of glycidyl methacrylate (GMA), results in a material having high grafting yield. The technique, utilizing a mutual irradiation method, produced poly-GMA (PGMA) grafted PP fabric with a remarkable grafting yield of 125 % in a 1:1 acetone–water mixture, subjected to 25 kGy of total dose at a dose rate of 5 kGyh<sup>−1</sup>. The enhancement of the amination process utilizing PGMA-grafted PP was investigated with polyamines. Under the optimized conditions, the diethylene triamine (DETA) functionalized variant was identified as an effective adsorbent for aqueous Pb<sup>2+</sup> ions. The optimized adsorbent exhibited a high saturation capacity of approximately 230 mgg<sup>−1</sup> for Pb<sup>2+</sup> ions, demonstrating rapid kinetics at near-neutral pH and 25 °C. This low cost innovative material holds significant promise for effective lead removal from drinking water and industrial wastewater, offering a sustainable economical solution for environmental remediation.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120886"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma radiation induced optimized synthesis of amine functionalised poly-glycidyl methacrylate grafted poly-propylene non-woven fabric and its adsorption behaviour towards aqueous Pb(II)\",\"authors\":\"Amit Kanjilal , Krishan Kant Singh , Awadhesh Kumar\",\"doi\":\"10.1016/j.ces.2024.120886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Comprehensive optimization of the functionalization of polypropylene (PP) non-woven fabric through gamma irradiation-induced graft polymerization of glycidyl methacrylate (GMA), results in a material having high grafting yield. The technique, utilizing a mutual irradiation method, produced poly-GMA (PGMA) grafted PP fabric with a remarkable grafting yield of 125 % in a 1:1 acetone–water mixture, subjected to 25 kGy of total dose at a dose rate of 5 kGyh<sup>−1</sup>. The enhancement of the amination process utilizing PGMA-grafted PP was investigated with polyamines. Under the optimized conditions, the diethylene triamine (DETA) functionalized variant was identified as an effective adsorbent for aqueous Pb<sup>2+</sup> ions. The optimized adsorbent exhibited a high saturation capacity of approximately 230 mgg<sup>−1</sup> for Pb<sup>2+</sup> ions, demonstrating rapid kinetics at near-neutral pH and 25 °C. This low cost innovative material holds significant promise for effective lead removal from drinking water and industrial wastewater, offering a sustainable economical solution for environmental remediation.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"302 \",\"pages\":\"Article 120886\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924011862\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924011862","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Gamma radiation induced optimized synthesis of amine functionalised poly-glycidyl methacrylate grafted poly-propylene non-woven fabric and its adsorption behaviour towards aqueous Pb(II)
Comprehensive optimization of the functionalization of polypropylene (PP) non-woven fabric through gamma irradiation-induced graft polymerization of glycidyl methacrylate (GMA), results in a material having high grafting yield. The technique, utilizing a mutual irradiation method, produced poly-GMA (PGMA) grafted PP fabric with a remarkable grafting yield of 125 % in a 1:1 acetone–water mixture, subjected to 25 kGy of total dose at a dose rate of 5 kGyh−1. The enhancement of the amination process utilizing PGMA-grafted PP was investigated with polyamines. Under the optimized conditions, the diethylene triamine (DETA) functionalized variant was identified as an effective adsorbent for aqueous Pb2+ ions. The optimized adsorbent exhibited a high saturation capacity of approximately 230 mgg−1 for Pb2+ ions, demonstrating rapid kinetics at near-neutral pH and 25 °C. This low cost innovative material holds significant promise for effective lead removal from drinking water and industrial wastewater, offering a sustainable economical solution for environmental remediation.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.