便捷合成缺陷 ZnS-ZnO 复合纳米片,用于高效压电催化制取 H2

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-11-07 DOI:10.1039/d4nr03733b
Xiaoxiao Lu, Xiaojing Zhao, Xiangyu Chen, Miaoqiong Xu, Miaoling Huang, Wen-Jie Chen, Yubin Liu, Xiaoyang Pan
{"title":"便捷合成缺陷 ZnS-ZnO 复合纳米片,用于高效压电催化制取 H2","authors":"Xiaoxiao Lu, Xiaojing Zhao, Xiangyu Chen, Miaoqiong Xu, Miaoling Huang, Wen-Jie Chen, Yubin Liu, Xiaoyang Pan","doi":"10.1039/d4nr03733b","DOIUrl":null,"url":null,"abstract":"A facile approach was developed for the synthesis of ultrathin ZnS-ZnO nanosheets. By simply manipulating the synthetic temperature, ZnS-ZnO composite nanosheets with sulfur vacancy are successfully obtained using ZnS(en)0.5 as precursor. The formation of the ZnS-ZnO composite leads to the creation of a heterojunction at the interface between the two materials, which enhances the separation of piezogenerated electrons and holes. Additionally, sulfur vacancies are concurrently introduced into the ZnS lattice during the heat treatment process. This defective ZnS with sulfur vacancies exhibits a narrowed bandgap and low excitation energy. Consequently, the defective ZnS-ZnO composite nanosheets demonstrate much higher piezocatalytic activity compared to ZnS and ZnO catalysts, surpassing the performance of most reported piezocatalysts. Furthermore, the ZnS-ZnO composite nanosheets maintain stability over five cycles of catalytic reactions. The study offers a promising approach for enhancing piezocatalytic performance for H2 production.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"3 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of defective ZnS-ZnO composite nanosheets for efficient piezocatalytic H2 production\",\"authors\":\"Xiaoxiao Lu, Xiaojing Zhao, Xiangyu Chen, Miaoqiong Xu, Miaoling Huang, Wen-Jie Chen, Yubin Liu, Xiaoyang Pan\",\"doi\":\"10.1039/d4nr03733b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A facile approach was developed for the synthesis of ultrathin ZnS-ZnO nanosheets. By simply manipulating the synthetic temperature, ZnS-ZnO composite nanosheets with sulfur vacancy are successfully obtained using ZnS(en)0.5 as precursor. The formation of the ZnS-ZnO composite leads to the creation of a heterojunction at the interface between the two materials, which enhances the separation of piezogenerated electrons and holes. Additionally, sulfur vacancies are concurrently introduced into the ZnS lattice during the heat treatment process. This defective ZnS with sulfur vacancies exhibits a narrowed bandgap and low excitation energy. Consequently, the defective ZnS-ZnO composite nanosheets demonstrate much higher piezocatalytic activity compared to ZnS and ZnO catalysts, surpassing the performance of most reported piezocatalysts. Furthermore, the ZnS-ZnO composite nanosheets maintain stability over five cycles of catalytic reactions. The study offers a promising approach for enhancing piezocatalytic performance for H2 production.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr03733b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03733b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员开发了一种简便的方法来合成超薄 ZnS-ZnO 纳米片。以 ZnS(en)0.5 为前驱体,通过简单地调节合成温度,成功地获得了具有硫空位的 ZnS-ZnO 复合纳米片。ZnS-ZnO 复合材料的形成导致在两种材料的界面上形成异质结,从而增强了压电产生的电子和空穴的分离。此外,在热处理过程中,硫空位也同时被引入到 ZnS 晶格中。这种带有硫空位的缺陷 ZnS 带隙变窄,激发能量变低。因此,与 ZnS 和 ZnO 催化剂相比,有缺陷的 ZnS-ZnO 复合纳米片具有更高的压电催化活性,其性能超过了大多数已报道的压电催化剂。此外,ZnS-ZnO 复合纳米片在五个循环的催化反应中都能保持稳定。该研究为提高压电催化性能以生产 H2 提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facile synthesis of defective ZnS-ZnO composite nanosheets for efficient piezocatalytic H2 production
A facile approach was developed for the synthesis of ultrathin ZnS-ZnO nanosheets. By simply manipulating the synthetic temperature, ZnS-ZnO composite nanosheets with sulfur vacancy are successfully obtained using ZnS(en)0.5 as precursor. The formation of the ZnS-ZnO composite leads to the creation of a heterojunction at the interface between the two materials, which enhances the separation of piezogenerated electrons and holes. Additionally, sulfur vacancies are concurrently introduced into the ZnS lattice during the heat treatment process. This defective ZnS with sulfur vacancies exhibits a narrowed bandgap and low excitation energy. Consequently, the defective ZnS-ZnO composite nanosheets demonstrate much higher piezocatalytic activity compared to ZnS and ZnO catalysts, surpassing the performance of most reported piezocatalysts. Furthermore, the ZnS-ZnO composite nanosheets maintain stability over five cycles of catalytic reactions. The study offers a promising approach for enhancing piezocatalytic performance for H2 production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Holey etching strategy of siloxene nanosheets to improve the rate performance of photo-assisted Li–O2 batteries Enantiomorphic single component conducting nickel(II) and platinum(II) bis(diethyl-dddt) crystalline complexes† Facile synthesis of in situ carbon-coated CoS2 micro/nano-spheres as high-performance anode materials for sodium-ion batteries A layered Janus Metastructure for multi-physical detection based on second harmonic wave Correction: Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1