Katsutoshi Imamura, William Garland, Manfred Schmid, Lis Jakobsen, Kengo Sato, Jérôme O. Rouvière, Kristoffer Pors Jakobsen, Elena Burlacu, Marta Loureiro Lopez, Søren Lykke-Andersen, Jens S. Andersen, Torben Heick Jensen
{"title":"微处理器与变体 NEXT 复合物之间的功能连接","authors":"Katsutoshi Imamura, William Garland, Manfred Schmid, Lis Jakobsen, Kengo Sato, Jérôme O. Rouvière, Kristoffer Pors Jakobsen, Elena Burlacu, Marta Loureiro Lopez, Søren Lykke-Andersen, Jens S. Andersen, Torben Heick Jensen","doi":"10.1016/j.molcel.2024.10.015","DOIUrl":null,"url":null,"abstract":"In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5′ flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8. Surprisingly, however, both biochemical and mutagenesis studies demonstrate that a variant NEXT complex, containing the RNA helicase MTR4 but devoid of the RNA-binding protein RBM7, is the active entity. This Microprocessor-NEXT variant also targets stem-loop-containing RNAs expressed from other genomic regions, such as enhancers. By contrast, Microprocessor does not contribute to the turnover of less structured NEXT substrates. Our results therefore demonstrate that MTR4-ZCCHC8 can link to either RBM7 or DGCR8/DROSHA to target different RNA substrates depending on their structural context.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"167 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A functional connection between the Microprocessor and a variant NEXT complex\",\"authors\":\"Katsutoshi Imamura, William Garland, Manfred Schmid, Lis Jakobsen, Kengo Sato, Jérôme O. Rouvière, Kristoffer Pors Jakobsen, Elena Burlacu, Marta Loureiro Lopez, Søren Lykke-Andersen, Jens S. Andersen, Torben Heick Jensen\",\"doi\":\"10.1016/j.molcel.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5′ flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8. Surprisingly, however, both biochemical and mutagenesis studies demonstrate that a variant NEXT complex, containing the RNA helicase MTR4 but devoid of the RNA-binding protein RBM7, is the active entity. This Microprocessor-NEXT variant also targets stem-loop-containing RNAs expressed from other genomic regions, such as enhancers. By contrast, Microprocessor does not contribute to the turnover of less structured NEXT substrates. Our results therefore demonstrate that MTR4-ZCCHC8 can link to either RBM7 or DGCR8/DROSHA to target different RNA substrates depending on their structural context.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A functional connection between the Microprocessor and a variant NEXT complex
In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5′ flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8. Surprisingly, however, both biochemical and mutagenesis studies demonstrate that a variant NEXT complex, containing the RNA helicase MTR4 but devoid of the RNA-binding protein RBM7, is the active entity. This Microprocessor-NEXT variant also targets stem-loop-containing RNAs expressed from other genomic regions, such as enhancers. By contrast, Microprocessor does not contribute to the turnover of less structured NEXT substrates. Our results therefore demonstrate that MTR4-ZCCHC8 can link to either RBM7 or DGCR8/DROSHA to target different RNA substrates depending on their structural context.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.