克里基中间体 CH2OO 与水蒸气反应的动力学:作为温度函数的实验测量结果和全球大气模型†。

IF 2.8 Q3 ENVIRONMENTAL SCIENCES Environmental science: atmospheres Pub Date : 2024-09-30 DOI:10.1039/D4EA00097H
Rachel E. Lade, Mark A. Blitz, Matthew Rowlinson, Mathew J. Evans, Paul W. Seakins and Daniel Stone
{"title":"克里基中间体 CH2OO 与水蒸气反应的动力学:作为温度函数的实验测量结果和全球大气模型†。","authors":"Rachel E. Lade, Mark A. Blitz, Matthew Rowlinson, Mathew J. Evans, Paul W. Seakins and Daniel Stone","doi":"10.1039/D4EA00097H","DOIUrl":null,"url":null,"abstract":"<p >The kinetics of reactions between the simplest Criegee intermediate, CH<small><sub>2</sub></small>OO, and water vapour have been investigated at temperatures between 262 and 353 K at a total pressure of 760 Torr using laser flash photolysis of CH<small><sub>2</sub></small>I<small><sub>2</sub></small>–O<small><sub>2</sub></small>–N<small><sub>2</sub></small>–H<small><sub>2</sub></small>O mixtures coupled with broadband time-resolved UV absorption spectroscopy. Results indicate that the reaction with water monomers represents a minor contribution to the total loss of CH<small><sub>2</sub></small>OO under the conditions employed in this work, with an estimated rate coefficient for CH<small><sub>2</sub></small>OO + H<small><sub>2</sub></small>O (R1) of (9.8 ± 5.9) × 10<small><sup>−17</sup></small> cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small> at 298 K and a temperature dependence described by <em>k</em><small><sub>1</sub></small> = (3.2 ± 1.1) × 10<small><sup>−13</sup></small> exp(−(2410 ± 270)/<em>T</em>) cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small>. The reaction of CH<small><sub>2</sub></small>OO with water dimers, CH<small><sub>2</sub></small>OO + (H<small><sub>2</sub></small>O)<small><sub>2</sub></small> (R2), dominates under the conditions employed in this work. The rate coefficient for R2 has been measured to be <em>k</em><small><sub>2</sub></small> = (9.5 ± 2.5) × 10<small><sup>−12</sup></small> cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small> at 298 K, with a negative temperature dependence described by <em>k</em><small><sub>2</sub></small> = (2.85 ± 0.40) × 10<small><sup>−15</sup></small> exp((2420 ± 340)/<em>T</em>) cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, where rate<small><sub>R2</sub></small> = <em>k</em><small><sub>2</sub></small>[CH<small><sub>2</sub></small>OO][(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>]. For use in atmospheric models, we recommend description of the kinetics for R2 in terms of the product of the rate coefficient <em>k</em><small><sub>2</sub></small> and the equilibrium constant <em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small> (<em>k</em><small><sub>2,eff</sub></small> = <em>k</em><small><sub>2</sub></small><em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small>) for water dimer formation to allow the rate of reaction to be expressed in terms of water monomer concentration as rate<small><sub>R2</sub></small> = <em>k</em><small><sub>2,eff</sub></small>[CH<small><sub>2</sub></small>OO][H<small><sub>2</sub></small>O]<small><sup>2</sup></small> to avoid explicit calculation of dimer concentrations and impacts of differences in values of <em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small> reported in the literature. Results from this work give <em>k</em><small><sub>2,eff</sub></small> = (1.96 ± 0.51) × 10<small><sup>−32</sup></small> cm<small><sup>6</sup></small> molecule<small><sup>−2</sup></small> s<small><sup>−1</sup></small> at 298 K with a temperature dependence described by <em>k</em><small><sub>2,eff</sub></small> = (2.78 ± 0.28) × 10<small><sup>−38</sup></small> exp((4010 ± 400)/<em>T</em>) cm<small><sup>6</sup></small> molecule<small><sup>−2</sup></small> s<small><sup>−1</sup></small>. No significant impacts of a reaction between CH<small><sub>2</sub></small>OO and three water molecules were observed in this work, potentially as a result of the relative humidities used in this work (up to 57% at 298 K). Atmospheric implications of the results have been investigated using the global chemistry transport model GEOS-Chem. Model simulations indicate that the reaction with water dimers dominates the loss of CH<small><sub>2</sub></small>OO in the atmosphere and limits the impacts of other reactions of CH<small><sub>2</sub></small>OO, with the reaction with water dimers representing &gt;98% of the total loss of CH<small><sub>2</sub></small>OO in the troposphere.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 11","pages":" 1294-1308"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00097h?page=search","citationCount":"0","resultStr":"{\"title\":\"Kinetics of the reactions of the Criegee intermediate CH2OO with water vapour: experimental measurements as a function of temperature and global atmospheric modelling†\",\"authors\":\"Rachel E. Lade, Mark A. Blitz, Matthew Rowlinson, Mathew J. Evans, Paul W. Seakins and Daniel Stone\",\"doi\":\"10.1039/D4EA00097H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The kinetics of reactions between the simplest Criegee intermediate, CH<small><sub>2</sub></small>OO, and water vapour have been investigated at temperatures between 262 and 353 K at a total pressure of 760 Torr using laser flash photolysis of CH<small><sub>2</sub></small>I<small><sub>2</sub></small>–O<small><sub>2</sub></small>–N<small><sub>2</sub></small>–H<small><sub>2</sub></small>O mixtures coupled with broadband time-resolved UV absorption spectroscopy. Results indicate that the reaction with water monomers represents a minor contribution to the total loss of CH<small><sub>2</sub></small>OO under the conditions employed in this work, with an estimated rate coefficient for CH<small><sub>2</sub></small>OO + H<small><sub>2</sub></small>O (R1) of (9.8 ± 5.9) × 10<small><sup>−17</sup></small> cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small> at 298 K and a temperature dependence described by <em>k</em><small><sub>1</sub></small> = (3.2 ± 1.1) × 10<small><sup>−13</sup></small> exp(−(2410 ± 270)/<em>T</em>) cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small>. The reaction of CH<small><sub>2</sub></small>OO with water dimers, CH<small><sub>2</sub></small>OO + (H<small><sub>2</sub></small>O)<small><sub>2</sub></small> (R2), dominates under the conditions employed in this work. The rate coefficient for R2 has been measured to be <em>k</em><small><sub>2</sub></small> = (9.5 ± 2.5) × 10<small><sup>−12</sup></small> cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small> at 298 K, with a negative temperature dependence described by <em>k</em><small><sub>2</sub></small> = (2.85 ± 0.40) × 10<small><sup>−15</sup></small> exp((2420 ± 340)/<em>T</em>) cm<small><sup>3</sup></small> molecule<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, where rate<small><sub>R2</sub></small> = <em>k</em><small><sub>2</sub></small>[CH<small><sub>2</sub></small>OO][(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>]. For use in atmospheric models, we recommend description of the kinetics for R2 in terms of the product of the rate coefficient <em>k</em><small><sub>2</sub></small> and the equilibrium constant <em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small> (<em>k</em><small><sub>2,eff</sub></small> = <em>k</em><small><sub>2</sub></small><em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small>) for water dimer formation to allow the rate of reaction to be expressed in terms of water monomer concentration as rate<small><sub>R2</sub></small> = <em>k</em><small><sub>2,eff</sub></small>[CH<small><sub>2</sub></small>OO][H<small><sub>2</sub></small>O]<small><sup>2</sup></small> to avoid explicit calculation of dimer concentrations and impacts of differences in values of <em>K</em><small><sup>D</sup></small><small><sub>eq</sub></small> reported in the literature. Results from this work give <em>k</em><small><sub>2,eff</sub></small> = (1.96 ± 0.51) × 10<small><sup>−32</sup></small> cm<small><sup>6</sup></small> molecule<small><sup>−2</sup></small> s<small><sup>−1</sup></small> at 298 K with a temperature dependence described by <em>k</em><small><sub>2,eff</sub></small> = (2.78 ± 0.28) × 10<small><sup>−38</sup></small> exp((4010 ± 400)/<em>T</em>) cm<small><sup>6</sup></small> molecule<small><sup>−2</sup></small> s<small><sup>−1</sup></small>. No significant impacts of a reaction between CH<small><sub>2</sub></small>OO and three water molecules were observed in this work, potentially as a result of the relative humidities used in this work (up to 57% at 298 K). Atmospheric implications of the results have been investigated using the global chemistry transport model GEOS-Chem. Model simulations indicate that the reaction with water dimers dominates the loss of CH<small><sub>2</sub></small>OO in the atmosphere and limits the impacts of other reactions of CH<small><sub>2</sub></small>OO, with the reaction with water dimers representing &gt;98% of the total loss of CH<small><sub>2</sub></small>OO in the troposphere.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 11\",\"pages\":\" 1294-1308\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00097h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00097h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00097h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用激光闪烁光解 CH2I2-O2-N2-H2O 混合物并结合宽带时间分辨紫外吸收光谱,研究了在 262 至 353 K 温度、760 托总压条件下最简单的克里基中间体 CH2OO 与水蒸气之间的反应动力学。结果表明,在本研究采用的条件下,与水单体的反应对 CH2OO 的总损失贡献不大,在 298 K 时,CH2OO + H2O (R1) 的估计速率系数为 (9.8 ± 5.9) × 10-17 cm3 分子-1 s-1,与温度的关系用 k1 = (3.2 ± 1.1) × 10-13 exp(-(2410 ± 270)/T) cm3 分子-1 s-1 描述。在本研究采用的条件下,CH2OO 与水二聚体的反应 CH2OO + (H2O)2 (R2) 占主导地位。在 298 K 时,R2 的速率系数为 k2 = (9.5 ± 2.5) × 10-12 cm3 分子-1 s-1,与温度的负相关关系为 k2 = (2.85 ± 0.40) × 10-15 exp((2420 ± 340)/T) cm3 分子-1 s-1,其中速率 R2 = k2[CH2OO][(H2O)2]。在大气模型中使用时,我们建议用水二聚体形成的速率系数 k2 与平衡常数 KDeq 的乘积(k2,eff = k2KDeq)来描述 R2 的动力学,以便用水单体浓度来表示反应速率,即速率 R2 = k2,eff[CH2OO][H2O]2,从而避免明确计算二聚体浓度和文献中报告的 KDeq 值差异的影响。这项工作的结果表明,在 298 K 时,k2,eff = (1.96 ± 0.51) × 10-32 cm6 molecule-2 s-1,温度依赖性描述为 k2,eff = (2.78 ± 0.28) × 10-38 exp((4010 ± 400)/T) cm6 molecule-2 s-1。在这项工作中,没有观察到 CH2OO 和三个水分子之间的反应有明显的影响,这可能是这项工作中使用的相对湿度(298 K 时高达 57%)的结果。使用全球化学传输模型 GEOS-Chem 对结果对大气的影响进行了研究。模型模拟表明,与水二聚体的反应主导了大气中 CH2OO 的损失,并限制了 CH2OO 其他反应的影响,与水二聚体的反应占对流层中 CH2OO 总损失的 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetics of the reactions of the Criegee intermediate CH2OO with water vapour: experimental measurements as a function of temperature and global atmospheric modelling†

The kinetics of reactions between the simplest Criegee intermediate, CH2OO, and water vapour have been investigated at temperatures between 262 and 353 K at a total pressure of 760 Torr using laser flash photolysis of CH2I2–O2–N2–H2O mixtures coupled with broadband time-resolved UV absorption spectroscopy. Results indicate that the reaction with water monomers represents a minor contribution to the total loss of CH2OO under the conditions employed in this work, with an estimated rate coefficient for CH2OO + H2O (R1) of (9.8 ± 5.9) × 10−17 cm3 molecule−1 s−1 at 298 K and a temperature dependence described by k1 = (3.2 ± 1.1) × 10−13 exp(−(2410 ± 270)/T) cm3 molecule−1 s−1. The reaction of CH2OO with water dimers, CH2OO + (H2O)2 (R2), dominates under the conditions employed in this work. The rate coefficient for R2 has been measured to be k2 = (9.5 ± 2.5) × 10−12 cm3 molecule−1 s−1 at 298 K, with a negative temperature dependence described by k2 = (2.85 ± 0.40) × 10−15 exp((2420 ± 340)/T) cm3 molecule−1 s−1, where rateR2 = k2[CH2OO][(H2O)2]. For use in atmospheric models, we recommend description of the kinetics for R2 in terms of the product of the rate coefficient k2 and the equilibrium constant KDeq (k2,eff = k2KDeq) for water dimer formation to allow the rate of reaction to be expressed in terms of water monomer concentration as rateR2 = k2,eff[CH2OO][H2O]2 to avoid explicit calculation of dimer concentrations and impacts of differences in values of KDeq reported in the literature. Results from this work give k2,eff = (1.96 ± 0.51) × 10−32 cm6 molecule−2 s−1 at 298 K with a temperature dependence described by k2,eff = (2.78 ± 0.28) × 10−38 exp((4010 ± 400)/T) cm6 molecule−2 s−1. No significant impacts of a reaction between CH2OO and three water molecules were observed in this work, potentially as a result of the relative humidities used in this work (up to 57% at 298 K). Atmospheric implications of the results have been investigated using the global chemistry transport model GEOS-Chem. Model simulations indicate that the reaction with water dimers dominates the loss of CH2OO in the atmosphere and limits the impacts of other reactions of CH2OO, with the reaction with water dimers representing >98% of the total loss of CH2OO in the troposphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. A framework for describing and classifying methane reporting requirements, emission sources, and monitoring methods† Does gas-phase sulfur dioxide remove films of atmosphere-extracted organic material from the aqueous aerosol air–water interface?† Enhanced detection of aromatic oxidation products using NO3 - chemical ionization mass spectrometry with limited nitric acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1