Ru Zhang, Gang Lin, Li Shang, Xiaoyuan Wu, Zhiquan Liu, Longchao Xu, Qinglin Sun, Jingying Fu, Huaiqing Hao, Hai-Chun Jing
{"title":"中国甜高粱生物产业的潜力、经济和生态效益","authors":"Ru Zhang, Gang Lin, Li Shang, Xiaoyuan Wu, Zhiquan Liu, Longchao Xu, Qinglin Sun, Jingying Fu, Huaiqing Hao, Hai-Chun Jing","doi":"10.1186/s13068-024-02582-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Sweet sorghum (<i>Sorghum bicolor</i>) displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the potential of sweet sorghum yield and appropriate industrial models in different marginal regions in China. This study explored the spatial distribution of potential sweet sorghum production using the Decision Support System for Agrotechnology Transfer (DSSAT) model and proposed three typical industrial models of sweet sorghum industry to calculate their economic and ecological benefits.</p><h3>Results</h3><p>The results indicate that considering the factors of land use, annual precipitation, soil salinity, soil pH, and accumulated temperature, approximately 32.23 million ha of marginal land are suitable for sweet sorghum cultivation in China, and 130 million tonnes (t) of ethanol can be produced. Further, the development of the sweet sorghum industry under the three models can generate 1425.49 billion CNY potential, approximately accounting for 3.57% of industrial added value in China if measured against 2023 levels, and reduce CO<sub>2</sub> emissions by 4.68 million t.</p><h3>Conclusions</h3><p>This study provides an innovative perspective for the multi-industry large-scale promotion of sweet sorghum in different marginal lands based on the high spatial resolution Geographic Information System (GIS) data by the DSSAT model with a Life Cycle Assessment (LCA) method, and this applies not only to China but also to the worldwide and other types of energy plants.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02582-6","citationCount":"0","resultStr":"{\"title\":\"Potential, economic and ecological benefits of sweet sorghum bio-industry in China\",\"authors\":\"Ru Zhang, Gang Lin, Li Shang, Xiaoyuan Wu, Zhiquan Liu, Longchao Xu, Qinglin Sun, Jingying Fu, Huaiqing Hao, Hai-Chun Jing\",\"doi\":\"10.1186/s13068-024-02582-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Sweet sorghum (<i>Sorghum bicolor</i>) displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the potential of sweet sorghum yield and appropriate industrial models in different marginal regions in China. This study explored the spatial distribution of potential sweet sorghum production using the Decision Support System for Agrotechnology Transfer (DSSAT) model and proposed three typical industrial models of sweet sorghum industry to calculate their economic and ecological benefits.</p><h3>Results</h3><p>The results indicate that considering the factors of land use, annual precipitation, soil salinity, soil pH, and accumulated temperature, approximately 32.23 million ha of marginal land are suitable for sweet sorghum cultivation in China, and 130 million tonnes (t) of ethanol can be produced. Further, the development of the sweet sorghum industry under the three models can generate 1425.49 billion CNY potential, approximately accounting for 3.57% of industrial added value in China if measured against 2023 levels, and reduce CO<sub>2</sub> emissions by 4.68 million t.</p><h3>Conclusions</h3><p>This study provides an innovative perspective for the multi-industry large-scale promotion of sweet sorghum in different marginal lands based on the high spatial resolution Geographic Information System (GIS) data by the DSSAT model with a Life Cycle Assessment (LCA) method, and this applies not only to China but also to the worldwide and other types of energy plants.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02582-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02582-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02582-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Potential, economic and ecological benefits of sweet sorghum bio-industry in China
Background
Sweet sorghum (Sorghum bicolor) displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the potential of sweet sorghum yield and appropriate industrial models in different marginal regions in China. This study explored the spatial distribution of potential sweet sorghum production using the Decision Support System for Agrotechnology Transfer (DSSAT) model and proposed three typical industrial models of sweet sorghum industry to calculate their economic and ecological benefits.
Results
The results indicate that considering the factors of land use, annual precipitation, soil salinity, soil pH, and accumulated temperature, approximately 32.23 million ha of marginal land are suitable for sweet sorghum cultivation in China, and 130 million tonnes (t) of ethanol can be produced. Further, the development of the sweet sorghum industry under the three models can generate 1425.49 billion CNY potential, approximately accounting for 3.57% of industrial added value in China if measured against 2023 levels, and reduce CO2 emissions by 4.68 million t.
Conclusions
This study provides an innovative perspective for the multi-industry large-scale promotion of sweet sorghum in different marginal lands based on the high spatial resolution Geographic Information System (GIS) data by the DSSAT model with a Life Cycle Assessment (LCA) method, and this applies not only to China but also to the worldwide and other types of energy plants.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis