Midiya Khademi, Mohammad Haghpanahi, Mohammad Razi, Ali Sharifnezhad, Mohammad Nikkhoo
{"title":"前交叉韧带重建术后膝关节前行和落地时的生物力学:有限元和步态分析","authors":"Midiya Khademi, Mohammad Haghpanahi, Mohammad Razi, Ali Sharifnezhad, Mohammad Nikkhoo","doi":"10.1007/s10409-024-24100-x","DOIUrl":null,"url":null,"abstract":"<div><p>The anterior cruciate ligament plays a crucial role in maintaining stability within the knee joint, particularly for athletes who frequently experience its rupture. This study presents a novel approach using personalized three-dimensional (3D) parametric finite element modeling of the knee joint to simulate the treatment following anterior cruciate ligament reconstruction (ACLR) in both forward walking (FW) and drop landing (DL) tasks. The study encompasses two distinct cohorts: five healthy athletes and five ACLR patients. Biomechanical motion analysis was conducted on both cohorts, with the ACLR patient group evaluated at 6 and 9 months post-surgery. A comprehensive 3D parametric model of the knee joint was meticulously crafted. The findings reveal a notable reduction in stress on crucial knee structures such as the autograft, meniscus, and cartilages over time for both FW and DL tasks following ACLR, with a reduction in tissue tension of approximately 9.5% and 37% for FW and DL, respectively. This personalized model not only facilitates the investigation of knee joint tissue biomechanics post-ACLR but also aids in estimating the return-to-sports timeline for patients. By accommodating individual tissue geometries and incorporating patient-specific kinetic data, this model enhances our comprehension of post-ACLR biomechanics across various functional tasks, thereby optimizing rehabilitation strategies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanics of knee joint during forward-walking and drop-landing after anterior cruciate ligament reconstruction: finite element and gait analysis\",\"authors\":\"Midiya Khademi, Mohammad Haghpanahi, Mohammad Razi, Ali Sharifnezhad, Mohammad Nikkhoo\",\"doi\":\"10.1007/s10409-024-24100-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The anterior cruciate ligament plays a crucial role in maintaining stability within the knee joint, particularly for athletes who frequently experience its rupture. This study presents a novel approach using personalized three-dimensional (3D) parametric finite element modeling of the knee joint to simulate the treatment following anterior cruciate ligament reconstruction (ACLR) in both forward walking (FW) and drop landing (DL) tasks. The study encompasses two distinct cohorts: five healthy athletes and five ACLR patients. Biomechanical motion analysis was conducted on both cohorts, with the ACLR patient group evaluated at 6 and 9 months post-surgery. A comprehensive 3D parametric model of the knee joint was meticulously crafted. The findings reveal a notable reduction in stress on crucial knee structures such as the autograft, meniscus, and cartilages over time for both FW and DL tasks following ACLR, with a reduction in tissue tension of approximately 9.5% and 37% for FW and DL, respectively. This personalized model not only facilitates the investigation of knee joint tissue biomechanics post-ACLR but also aids in estimating the return-to-sports timeline for patients. By accommodating individual tissue geometries and incorporating patient-specific kinetic data, this model enhances our comprehension of post-ACLR biomechanics across various functional tasks, thereby optimizing rehabilitation strategies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24100-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24100-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Biomechanics of knee joint during forward-walking and drop-landing after anterior cruciate ligament reconstruction: finite element and gait analysis
The anterior cruciate ligament plays a crucial role in maintaining stability within the knee joint, particularly for athletes who frequently experience its rupture. This study presents a novel approach using personalized three-dimensional (3D) parametric finite element modeling of the knee joint to simulate the treatment following anterior cruciate ligament reconstruction (ACLR) in both forward walking (FW) and drop landing (DL) tasks. The study encompasses two distinct cohorts: five healthy athletes and five ACLR patients. Biomechanical motion analysis was conducted on both cohorts, with the ACLR patient group evaluated at 6 and 9 months post-surgery. A comprehensive 3D parametric model of the knee joint was meticulously crafted. The findings reveal a notable reduction in stress on crucial knee structures such as the autograft, meniscus, and cartilages over time for both FW and DL tasks following ACLR, with a reduction in tissue tension of approximately 9.5% and 37% for FW and DL, respectively. This personalized model not only facilitates the investigation of knee joint tissue biomechanics post-ACLR but also aids in estimating the return-to-sports timeline for patients. By accommodating individual tissue geometries and incorporating patient-specific kinetic data, this model enhances our comprehension of post-ACLR biomechanics across various functional tasks, thereby optimizing rehabilitation strategies.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics