Evoattack:利用进化搜索对物体检测模型进行压制性对抗攻击

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2024-11-06 DOI:10.1007/s10515-024-00470-9
Kenneth H. Chan, Betty H. C. Cheng
{"title":"Evoattack:利用进化搜索对物体检测模型进行压制性对抗攻击","authors":"Kenneth H. Chan,&nbsp;Betty H. C. Cheng","doi":"10.1007/s10515-024-00470-9","DOIUrl":null,"url":null,"abstract":"<div><p>State-of-the-art deep neural networks are increasingly used in image classification, recognition, and detection tasks for a range of real-world applications. Moreover, many of these applications are safety-critical, where the failure of the system may cause serious harm, injuries, or even deaths. Adversarial examples are expected inputs that are maliciously modified, but difficult to detect, such that the machine learning models fail to classify them correctly. While a number of evolutionary search-based approaches have been developed to generate adversarial examples against image classification problems, evolutionary search-based attacks against <i>object detection</i> algorithms remain largely unexplored. This paper describes <span>EvoAttack</span> that demonstrates how evolutionary search-based techniques can be used as a black-box, model- and data-agnostic approach to attack state-of-the-art object detection algorithms (e.g., RetinaNet, Faster R-CNN, and YoloV5). A proof-of-concept implementation is provided to demonstrate how evolutionary search can generate adversarial examples that existing models fail to correctly process, which can be used to assess model robustness against such attacks. In contrast to other adversarial example approaches that cause misclassification or incorrect labeling of objects, <span>EvoAttack</span> applies minor perturbations to generate adversarial examples that <i>suppress</i> the ability of object detection algorithms to detect objects. We applied <span>EvoAttack</span> to popular benchmark datasets for autonomous terrestrial and aerial vehicles.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evoattack: suppressive adversarial attacks against object detection models using evolutionary search\",\"authors\":\"Kenneth H. Chan,&nbsp;Betty H. C. Cheng\",\"doi\":\"10.1007/s10515-024-00470-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>State-of-the-art deep neural networks are increasingly used in image classification, recognition, and detection tasks for a range of real-world applications. Moreover, many of these applications are safety-critical, where the failure of the system may cause serious harm, injuries, or even deaths. Adversarial examples are expected inputs that are maliciously modified, but difficult to detect, such that the machine learning models fail to classify them correctly. While a number of evolutionary search-based approaches have been developed to generate adversarial examples against image classification problems, evolutionary search-based attacks against <i>object detection</i> algorithms remain largely unexplored. This paper describes <span>EvoAttack</span> that demonstrates how evolutionary search-based techniques can be used as a black-box, model- and data-agnostic approach to attack state-of-the-art object detection algorithms (e.g., RetinaNet, Faster R-CNN, and YoloV5). A proof-of-concept implementation is provided to demonstrate how evolutionary search can generate adversarial examples that existing models fail to correctly process, which can be used to assess model robustness against such attacks. In contrast to other adversarial example approaches that cause misclassification or incorrect labeling of objects, <span>EvoAttack</span> applies minor perturbations to generate adversarial examples that <i>suppress</i> the ability of object detection algorithms to detect objects. We applied <span>EvoAttack</span> to popular benchmark datasets for autonomous terrestrial and aerial vehicles.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00470-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00470-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

最先进的深度神经网络正越来越多地应用于图像分类、识别和检测任务中的一系列现实世界应用。此外,这些应用中有许多是安全关键型应用,系统故障可能会造成严重伤害、人员伤亡甚至死亡。对抗性示例是被恶意修改但难以检测的预期输入,因此机器学习模型无法对其进行正确分类。虽然针对图像分类问题已经开发了许多基于进化搜索的方法来生成对抗性示例,但针对物体检测算法的基于进化搜索的攻击在很大程度上仍未被探索。本文介绍了 EvoAttack,它展示了如何将基于进化搜索的技术用作黑盒、模型和数据无关的方法,来攻击最先进的物体检测算法(如 RetinaNet、Faster R-CNN 和 YoloV5)。本文提供了一个概念验证实现,以演示进化搜索如何生成现有模型无法正确处理的对抗性示例,这些示例可用于评估模型对此类攻击的鲁棒性。与其他会导致对象分类错误或标记错误的对抗性示例方法不同,EvoAttack 采用微小的扰动来生成对抗性示例,从而抑制对象检测算法检测对象的能力。我们将 EvoAttack 应用于陆地和空中自主飞行器的流行基准数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evoattack: suppressive adversarial attacks against object detection models using evolutionary search

State-of-the-art deep neural networks are increasingly used in image classification, recognition, and detection tasks for a range of real-world applications. Moreover, many of these applications are safety-critical, where the failure of the system may cause serious harm, injuries, or even deaths. Adversarial examples are expected inputs that are maliciously modified, but difficult to detect, such that the machine learning models fail to classify them correctly. While a number of evolutionary search-based approaches have been developed to generate adversarial examples against image classification problems, evolutionary search-based attacks against object detection algorithms remain largely unexplored. This paper describes EvoAttack that demonstrates how evolutionary search-based techniques can be used as a black-box, model- and data-agnostic approach to attack state-of-the-art object detection algorithms (e.g., RetinaNet, Faster R-CNN, and YoloV5). A proof-of-concept implementation is provided to demonstrate how evolutionary search can generate adversarial examples that existing models fail to correctly process, which can be used to assess model robustness against such attacks. In contrast to other adversarial example approaches that cause misclassification or incorrect labeling of objects, EvoAttack applies minor perturbations to generate adversarial examples that suppress the ability of object detection algorithms to detect objects. We applied EvoAttack to popular benchmark datasets for autonomous terrestrial and aerial vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
Evoattack: suppressive adversarial attacks against object detection models using evolutionary search Multi-objective improvement of Android applications Contractsentry: a static analysis tool for smart contract vulnerability detection Exploring the impact of code review factors on the code review comment generation A holistic approach to software fault prediction with dynamic classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1