在黑色素瘤案例研究中整合组织病理学和转录组学进行空间肿瘤微环境分析

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-11-07 DOI:10.1038/s41698-024-00749-w
Óscar Lapuente-Santana, Joan Kant, Federica Eduati
{"title":"在黑色素瘤案例研究中整合组织病理学和转录组学进行空间肿瘤微环境分析","authors":"Óscar Lapuente-Santana, Joan Kant, Federica Eduati","doi":"10.1038/s41698-024-00749-w","DOIUrl":null,"url":null,"abstract":"Local structures formed by cells in the tumor microenvironment (TME) play an important role in tumor development and treatment response. This study introduces SPoTLIghT, a computational framework providing a quantitative description of the tumor architecture from hematoxylin and eosin (H&E) slides. We trained a weakly supervised machine learning model on melanoma patients linking tile-level imaging features extracted from H&E slides to sample-level cell type quantifications derived from RNA-sequencing data. Using this model, SPoTLIghT provides spatial cellular maps for any H&E image, and converts them in graphs to derive 96 interpretable features capturing TME cellular organization. We show how SPoTLIghT’s spatial features can distinguish microenvironment subtypes and reveal nuanced immune infiltration structures not apparent in molecular data alone. Finally, we use SPoTLIghT to effectively predict patients’ prognosis in an independent melanoma cohort. SPoTLIghT enhances computational histopathology providing a quantitative and interpretable characterization of the spatial contexture of tumors.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00749-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating histopathology and transcriptomics for spatial tumor microenvironment profiling in a melanoma case study\",\"authors\":\"Óscar Lapuente-Santana, Joan Kant, Federica Eduati\",\"doi\":\"10.1038/s41698-024-00749-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local structures formed by cells in the tumor microenvironment (TME) play an important role in tumor development and treatment response. This study introduces SPoTLIghT, a computational framework providing a quantitative description of the tumor architecture from hematoxylin and eosin (H&E) slides. We trained a weakly supervised machine learning model on melanoma patients linking tile-level imaging features extracted from H&E slides to sample-level cell type quantifications derived from RNA-sequencing data. Using this model, SPoTLIghT provides spatial cellular maps for any H&E image, and converts them in graphs to derive 96 interpretable features capturing TME cellular organization. We show how SPoTLIghT’s spatial features can distinguish microenvironment subtypes and reveal nuanced immune infiltration structures not apparent in molecular data alone. Finally, we use SPoTLIghT to effectively predict patients’ prognosis in an independent melanoma cohort. SPoTLIghT enhances computational histopathology providing a quantitative and interpretable characterization of the spatial contexture of tumors.\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41698-024-00749-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41698-024-00749-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00749-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞在肿瘤微环境(TME)中形成的局部结构对肿瘤的发展和治疗反应起着重要作用。本研究介绍了 SPoTLIghT,这是一种计算框架,可通过苏木精和伊红(H&E)切片对肿瘤结构进行定量描述。我们在黑色素瘤患者身上训练了一个弱监督机器学习模型,将从 H&E 切片中提取的瓦片级成像特征与从 RNA 序列数据中获得的样本级细胞类型定量联系起来。利用该模型,SPoTLIghT 可为任何 H&E 图像提供空间细胞图,并将其转换为图形,从而得出 96 个可解释的特征,捕捉 TME 细胞组织。我们展示了 SPoTLIghT 的空间特征如何区分微环境亚型,并揭示仅靠分子数据无法显现的细微免疫浸润结构。最后,我们利用 SPoTLIghT 有效预测了独立黑色素瘤队列中患者的预后。SPoTLIghT 增强了计算组织病理学,提供了肿瘤空间环境的定量和可解释特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating histopathology and transcriptomics for spatial tumor microenvironment profiling in a melanoma case study
Local structures formed by cells in the tumor microenvironment (TME) play an important role in tumor development and treatment response. This study introduces SPoTLIghT, a computational framework providing a quantitative description of the tumor architecture from hematoxylin and eosin (H&E) slides. We trained a weakly supervised machine learning model on melanoma patients linking tile-level imaging features extracted from H&E slides to sample-level cell type quantifications derived from RNA-sequencing data. Using this model, SPoTLIghT provides spatial cellular maps for any H&E image, and converts them in graphs to derive 96 interpretable features capturing TME cellular organization. We show how SPoTLIghT’s spatial features can distinguish microenvironment subtypes and reveal nuanced immune infiltration structures not apparent in molecular data alone. Finally, we use SPoTLIghT to effectively predict patients’ prognosis in an independent melanoma cohort. SPoTLIghT enhances computational histopathology providing a quantitative and interpretable characterization of the spatial contexture of tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Benchmark of screening markers for KEAP1/NFE2L2 mutations and joint analysis with the K1N2-score Immune infiltration correlates with transcriptomic subtypes in primary estrogen receptor positive invasive lobular breast cancer RNF4 mediated degradation of PDHA1 promotes colorectal cancer metabolism and metastasis Multi-omics analysis of Prolyl 3-hydroxylase 1 as a prognostic biomarker for immune infiltration in ccRCC Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1