精细图像识别方法及其在遥感图像中的应用:综述

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Pub Date : 2024-10-16 DOI:10.1109/JSTARS.2024.3482348
Yang Chu;Minchao Ye;Yuntao Qian
{"title":"精细图像识别方法及其在遥感图像中的应用:综述","authors":"Yang Chu;Minchao Ye;Yuntao Qian","doi":"10.1109/JSTARS.2024.3482348","DOIUrl":null,"url":null,"abstract":"Fine-grained image recognition (FGIR), unlike traditional coarse-grained recognition, is centered on distinguishing fine-level subclasses within broader semantic categories. It holds significant scientific research value, particularly in remote sensing, where the precise identification of specific objects—such as ships, buildings, and land use categories—is critical for tasks like boundary security, environmental monitoring, and urban planning. Recent advancements in FGIR have notably improved feature representation and generalization, especially under the diverse imaging conditions typical of remote sensing. However, challenges remain, including the heavy reliance on high-quality large-scale fine-grained image data and difficulties in extracting subtle image features. Efficiently utilizing limited data and enhancing feature extraction capabilities have thus become key focus areas in current FGIR research. This article systematically reviews the advancements in FGIR, covering its foundational principles, key methodologies, and the latest research developments, while providing a comprehensive comparative analysis of their performance in remote sensing image applications. In addition, it addresses the specific challenges posed by fine-grained recognition in remote sensing imagery and explores potential directions for future research in this field.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19640-19667"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720642","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Image Recognition Methods and Their Applications in Remote Sensing Images: A Review\",\"authors\":\"Yang Chu;Minchao Ye;Yuntao Qian\",\"doi\":\"10.1109/JSTARS.2024.3482348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained image recognition (FGIR), unlike traditional coarse-grained recognition, is centered on distinguishing fine-level subclasses within broader semantic categories. It holds significant scientific research value, particularly in remote sensing, where the precise identification of specific objects—such as ships, buildings, and land use categories—is critical for tasks like boundary security, environmental monitoring, and urban planning. Recent advancements in FGIR have notably improved feature representation and generalization, especially under the diverse imaging conditions typical of remote sensing. However, challenges remain, including the heavy reliance on high-quality large-scale fine-grained image data and difficulties in extracting subtle image features. Efficiently utilizing limited data and enhancing feature extraction capabilities have thus become key focus areas in current FGIR research. This article systematically reviews the advancements in FGIR, covering its foundational principles, key methodologies, and the latest research developments, while providing a comprehensive comparative analysis of their performance in remote sensing image applications. In addition, it addresses the specific challenges posed by fine-grained recognition in remote sensing imagery and explores potential directions for future research in this field.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19640-19667\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720642/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720642/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

细粒度图像识别(FGIR)与传统的粗粒度识别不同,其核心是在更广泛的语义类别中区分细粒度子类。它具有重要的科学研究价值,特别是在遥感领域,精确识别特定物体(如船舶、建筑物和土地使用类别)对于边界安全、环境监测和城市规划等任务至关重要。FGIR 的最新进展显著改善了特征表示和概括能力,尤其是在遥感典型的多种成像条件下。然而,挑战依然存在,包括对高质量大规模精细图像数据的严重依赖,以及提取微妙图像特征的困难。因此,有效利用有限数据和增强特征提取能力已成为当前 FGIR 研究的重点领域。本文系统回顾了 FGIR 的研究进展,包括其基本原理、关键方法和最新研究进展,同时对其在遥感图像应用中的性能进行了全面的比较分析。此外,文章还探讨了遥感图像细粒度识别所带来的具体挑战,并探讨了该领域未来研究的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-Grained Image Recognition Methods and Their Applications in Remote Sensing Images: A Review
Fine-grained image recognition (FGIR), unlike traditional coarse-grained recognition, is centered on distinguishing fine-level subclasses within broader semantic categories. It holds significant scientific research value, particularly in remote sensing, where the precise identification of specific objects—such as ships, buildings, and land use categories—is critical for tasks like boundary security, environmental monitoring, and urban planning. Recent advancements in FGIR have notably improved feature representation and generalization, especially under the diverse imaging conditions typical of remote sensing. However, challenges remain, including the heavy reliance on high-quality large-scale fine-grained image data and difficulties in extracting subtle image features. Efficiently utilizing limited data and enhancing feature extraction capabilities have thus become key focus areas in current FGIR research. This article systematically reviews the advancements in FGIR, covering its foundational principles, key methodologies, and the latest research developments, while providing a comprehensive comparative analysis of their performance in remote sensing image applications. In addition, it addresses the specific challenges posed by fine-grained recognition in remote sensing imagery and explores potential directions for future research in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
期刊最新文献
CR-DEQ-SAR: A Deep Equilibrium Sparse SAR Imaging Method for Compound Regularization HSRoadNet: Hard-Swish Activation Function and Improved Squeeze–Excitation Module Network for Road Extraction Using Satellite Remote Sensing Imagery Identification of Spectrally Similar Materials From Multispectral Imagery Based on Condition Number of Matrix ClassWise-SAM-Adapter: Parameter-Efficient Fine-Tuning Adapts Segment Anything to SAR Domain for Semantic Segmentation IAE-CDNet: A Remote Sensing Change Detection Network for Buildings With Interactive Attention-Enhanced
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1