FDGSNet:基于频率分解的遥感图像多模态门控分割网络

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Pub Date : 2024-10-01 DOI:10.1109/JSTARS.2024.3471638
Jian Cui;Jiahang Liu;Yue Ni;Jinjin Wang;Manchun Li
{"title":"FDGSNet:基于频率分解的遥感图像多模态门控分割网络","authors":"Jian Cui;Jiahang Liu;Yue Ni;Jinjin Wang;Manchun Li","doi":"10.1109/JSTARS.2024.3471638","DOIUrl":null,"url":null,"abstract":"Multiple modal data fusion can provide valuable and diverse information for remote sensing image segmentation. However, the existing fusion methods often lead to feature loss during the fusion of various modal data, and the complementarity among multimodal features is insufficient. To address these problems, we propose a multimodal gated segmentation network for remote sensing images based on the frequency decomposition. Complementary information from multimodal features is extracted by establishing a long-distance correlation between the low-frequency components of different modal data. In addition, high-frequency detailed features of different modal data are preserved by residual connection. The adaptive gated fusion method is then used to control the information flow between the complementary information and each modality feature map, enabling adaptive fusion between multimodal features. These operations can effectively improve the adaptability of the proposed method in various scenarios and data changes. Extensive experiments demonstrate that the proposed method has good effectiveness, robustness, and generalization and achieved state-of-the-art performance in several remote sensing image semantic segmentation tasks.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19756-19770"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700993","citationCount":"0","resultStr":"{\"title\":\"FDGSNet: A Multimodal Gated Segmentation Network for Remote Sensing Image Based on Frequency Decomposition\",\"authors\":\"Jian Cui;Jiahang Liu;Yue Ni;Jinjin Wang;Manchun Li\",\"doi\":\"10.1109/JSTARS.2024.3471638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple modal data fusion can provide valuable and diverse information for remote sensing image segmentation. However, the existing fusion methods often lead to feature loss during the fusion of various modal data, and the complementarity among multimodal features is insufficient. To address these problems, we propose a multimodal gated segmentation network for remote sensing images based on the frequency decomposition. Complementary information from multimodal features is extracted by establishing a long-distance correlation between the low-frequency components of different modal data. In addition, high-frequency detailed features of different modal data are preserved by residual connection. The adaptive gated fusion method is then used to control the information flow between the complementary information and each modality feature map, enabling adaptive fusion between multimodal features. These operations can effectively improve the adaptability of the proposed method in various scenarios and data changes. Extensive experiments demonstrate that the proposed method has good effectiveness, robustness, and generalization and achieved state-of-the-art performance in several remote sensing image semantic segmentation tasks.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19756-19770\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700993\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700993/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700993/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多模态数据融合可为遥感图像分割提供有价值的多样化信息。然而,现有的融合方法在融合各种模态数据时往往会导致特征丢失,而且多模态特征之间的互补性不足。针对这些问题,我们提出了一种基于频率分解的遥感图像多模态门控分割网络。通过在不同模态数据的低频分量之间建立远距离相关性,提取多模态特征的互补信息。此外,不同模态数据的高频细节特征通过残差连接得以保留。然后使用自适应门控融合方法来控制互补信息与各模态特征图之间的信息流,从而实现多模态特征之间的自适应融合。这些操作可以有效提高拟议方法在各种场景和数据变化中的适应性。大量实验证明,所提出的方法具有良好的有效性、鲁棒性和泛化性,在多个遥感图像语义分割任务中取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FDGSNet: A Multimodal Gated Segmentation Network for Remote Sensing Image Based on Frequency Decomposition
Multiple modal data fusion can provide valuable and diverse information for remote sensing image segmentation. However, the existing fusion methods often lead to feature loss during the fusion of various modal data, and the complementarity among multimodal features is insufficient. To address these problems, we propose a multimodal gated segmentation network for remote sensing images based on the frequency decomposition. Complementary information from multimodal features is extracted by establishing a long-distance correlation between the low-frequency components of different modal data. In addition, high-frequency detailed features of different modal data are preserved by residual connection. The adaptive gated fusion method is then used to control the information flow between the complementary information and each modality feature map, enabling adaptive fusion between multimodal features. These operations can effectively improve the adaptability of the proposed method in various scenarios and data changes. Extensive experiments demonstrate that the proposed method has good effectiveness, robustness, and generalization and achieved state-of-the-art performance in several remote sensing image semantic segmentation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
期刊最新文献
Are Mediators of Grief Reactions Better Predictors Than Risk Factors? A Study Testing the Role of Satisfaction With Rituals, Perceived Social Support, and Coping Strategies. Frontcover Unsupervised Domain Adaptative SAR Target Detection Based on Feature Decomposition and Uncertainty-Guided Self-Training Evaluation of Total Precipitable Water Trends From Reprocessed MiRS SNPP ATMS Observations, 2012–2021 Multiscale Attention-UNet-Based Near-Real-Time Precipitation Estimation From FY-4A/AGRI and Doppler Radar Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1