阳离子-π相互作用增强的高效隔热聚酰亚胺泡沫

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-11-03 DOI:10.1007/s10853-024-10372-6
Longhai Zhuo, Lixia He, Yuhan Wang, Pengfei Gou, Xuechuan Wang, Guang Hu, Fan Xie
{"title":"阳离子-π相互作用增强的高效隔热聚酰亚胺泡沫","authors":"Longhai Zhuo,&nbsp;Lixia He,&nbsp;Yuhan Wang,&nbsp;Pengfei Gou,&nbsp;Xuechuan Wang,&nbsp;Guang Hu,&nbsp;Fan Xie","doi":"10.1007/s10853-024-10372-6","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced thermal management materials play a crucial role in driving innovation and enhancing the performance of cutting-edge technologies. In this work, polyimide foams were fabricated by freeze-drying precursor polyamic acid (PAA) solutions and thermally imidization, incorporating π-electron-rich benzimidazole structures along with Cu<sup>2</sup>⁺, Ca<sup>2</sup>⁺, Na⁺, and K⁺ ions to form cation-π crosslinked structures. The integration of cation-π crosslinked structures notably enhanced polyimide foams, boosting its compressive strength, glass transition temperature, and thermal insulation properties. Particularly noteworthy was the superior enhancement and modification effects exhibited by Ca<sup>2</sup>⁺ among the cations, followed by Cu<sup>2</sup>⁺, whereas Na⁺ and K⁺ showed relatively lesser effectiveness. Specifically, the inclusion of 30 mol% Ca<sup>2</sup>⁺ resulted in a remarkable 136.36% increase in compressive strength and a 320.47% increase in Young's modulus for the polyimide foams. Furthermore, a 50 mol% infusion of Ca<sup>2</sup>⁺ reduced the thermal conductivity from 0.0533 to 0.0432 W m⁻<sup>1</sup> K⁻<sup>1</sup> compared to pristine polyimide foam, while also decreasing the surface temperature of a 15 mm thick sample from 74.1 to 55.7 °C after exposure to a 200 °C platform for 10 min. This study underscores the importance of integrating cation-π crosslinked structures into polyimide foams, leading to significant improvements in thermal insulation properties and thus advancing the field of thermal management materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 42","pages":"20092 - 20106"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient thermal insulation polyimide foams enhanced by cation-π interactions\",\"authors\":\"Longhai Zhuo,&nbsp;Lixia He,&nbsp;Yuhan Wang,&nbsp;Pengfei Gou,&nbsp;Xuechuan Wang,&nbsp;Guang Hu,&nbsp;Fan Xie\",\"doi\":\"10.1007/s10853-024-10372-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advanced thermal management materials play a crucial role in driving innovation and enhancing the performance of cutting-edge technologies. In this work, polyimide foams were fabricated by freeze-drying precursor polyamic acid (PAA) solutions and thermally imidization, incorporating π-electron-rich benzimidazole structures along with Cu<sup>2</sup>⁺, Ca<sup>2</sup>⁺, Na⁺, and K⁺ ions to form cation-π crosslinked structures. The integration of cation-π crosslinked structures notably enhanced polyimide foams, boosting its compressive strength, glass transition temperature, and thermal insulation properties. Particularly noteworthy was the superior enhancement and modification effects exhibited by Ca<sup>2</sup>⁺ among the cations, followed by Cu<sup>2</sup>⁺, whereas Na⁺ and K⁺ showed relatively lesser effectiveness. Specifically, the inclusion of 30 mol% Ca<sup>2</sup>⁺ resulted in a remarkable 136.36% increase in compressive strength and a 320.47% increase in Young's modulus for the polyimide foams. Furthermore, a 50 mol% infusion of Ca<sup>2</sup>⁺ reduced the thermal conductivity from 0.0533 to 0.0432 W m⁻<sup>1</sup> K⁻<sup>1</sup> compared to pristine polyimide foam, while also decreasing the surface temperature of a 15 mm thick sample from 74.1 to 55.7 °C after exposure to a 200 °C platform for 10 min. This study underscores the importance of integrating cation-π crosslinked structures into polyimide foams, leading to significant improvements in thermal insulation properties and thus advancing the field of thermal management materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 42\",\"pages\":\"20092 - 20106\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10372-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10372-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先进的热管理材料在推动创新和提高尖端技术性能方面发挥着至关重要的作用。在这项工作中,通过冷冻干燥前体聚酰胺酸(PAA)溶液并进行热酰亚胺化,将富含π电子的苯并咪唑结构与Cu2⁺、Ca2⁺、Na⁺和K⁺离子结合形成阳离子-π交联结构,从而制造出了聚酰亚胺泡沫。阳离子-π 交联结构的整合显著增强了聚酰亚胺泡沫的性能,提高了其抗压强度、玻璃化转变温度和隔热性能。尤其值得注意的是,阳离子中 Ca2⁺的增强和改性效果更佳,其次是 Cu2⁺,而 Na⁺ 和 K⁺ 的效果相对较差。具体来说,加入 30 摩尔% 的 Ca2⁺ 后,聚酰亚胺泡沫的抗压强度显著提高了 136.36%,杨氏模量提高了 320.47%。此外,与原始聚酰亚胺泡沫相比,50 摩尔% 的 Ca2⁺注入可将导热系数从 0.0533 W m-1 K-1 降低到 0.0432 W m-1 K-1,同时在 200 °C 平台上暴露 10 分钟后,15 毫米厚样品的表面温度也从 74.1 °C 降低到 55.7 °C。这项研究强调了将阳离子π交联结构整合到聚酰亚胺泡沫中的重要性,从而显著改善了隔热性能,推动了热管理材料领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient thermal insulation polyimide foams enhanced by cation-π interactions

Advanced thermal management materials play a crucial role in driving innovation and enhancing the performance of cutting-edge technologies. In this work, polyimide foams were fabricated by freeze-drying precursor polyamic acid (PAA) solutions and thermally imidization, incorporating π-electron-rich benzimidazole structures along with Cu2⁺, Ca2⁺, Na⁺, and K⁺ ions to form cation-π crosslinked structures. The integration of cation-π crosslinked structures notably enhanced polyimide foams, boosting its compressive strength, glass transition temperature, and thermal insulation properties. Particularly noteworthy was the superior enhancement and modification effects exhibited by Ca2⁺ among the cations, followed by Cu2⁺, whereas Na⁺ and K⁺ showed relatively lesser effectiveness. Specifically, the inclusion of 30 mol% Ca2⁺ resulted in a remarkable 136.36% increase in compressive strength and a 320.47% increase in Young's modulus for the polyimide foams. Furthermore, a 50 mol% infusion of Ca2⁺ reduced the thermal conductivity from 0.0533 to 0.0432 W m⁻1 K⁻1 compared to pristine polyimide foam, while also decreasing the surface temperature of a 15 mm thick sample from 74.1 to 55.7 °C after exposure to a 200 °C platform for 10 min. This study underscores the importance of integrating cation-π crosslinked structures into polyimide foams, leading to significant improvements in thermal insulation properties and thus advancing the field of thermal management materials.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
The influence of entanglement degree controlled by complex shear field on the performance of long-chain branched polypropylene Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process Crystallization behavior and thermal properties of octa-phenyl-substituted silsesquioxane-modified polylactide (PLA) Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications High-security organic PVDF-coated SiO2 aerogel lithium battery separator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1