{"title":"用于环境应用的闪燃制备掺杂 Sm 和 Co 的硒六价铁氧体","authors":"Mai M. El-Masry, Rania Ramadan","doi":"10.1007/s10450-024-00532-0","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology is offering solutions to water contamination issues, as new techniques are needed to improve the removal of harmful compounds from water bodies. Despite previous reviews on this topic, nanotechnology is paving the way for more effective water treatment methods. Understanding the substitute influence of divalent Co<sup>2+</sup> and rare earth elements Sm<sup>3+</sup> on the structure, magnetic, and removal efficiency of hexagonal ferrites requires an understanding of a sequence of SrFe<sub>12</sub>O<sub>19</sub>, SrFe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub>, Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>12</sub>O<sub>19</sub>, and Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub> M-type hexagonal ferrites were prepared using the flash technique. The XRD examination revealed that the crystallized material formed a single M-type hexagonal phase. The characteristics of M-type hexagonal ferrites include absorption bands with low wavenumbers in the FTIR curves between 400 to 1000 cm<sup>−1</sup>. There was a variation in magnetic characteristics with the replacement of Sm<sup>3+</sup> and Co<sup>2+</sup> doping, possibly due to the spin canting impact created by rare earth Sm<sup>3+</sup> and Co<sup>2+</sup> ions. The goal of the research is to explore the potential of doping magnetic hexaferrites and its influence in wastewater treatment. Various parameters, such as pH and contact duration, that influence the adsorption of lead ions from aqueous solutions were also examined. At pH 7 and 25 °C after 70min, the maximal removal efficiency of the Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub> was found to be 99%. Magnetic separation was carried out by applying an external magnetic field using a permanent magnet. The strong magnetization of the ferrites (51–58 emu/g) enabled the rapid separation of the magnetic particles from the solution, with over 95% of the ferrite particles being recovered within 10 to 70 min. The Freundlich isotherm model fitted all the isotherm data. Adsorption kinetics were explained by the pseudo-first-order, pseudo-second order, and intraparticle diffusion models. The investigated samples’ adsorption capacity remained efficient till 5 cycles.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 8","pages":"2017 - 2035"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00532-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Flash combustion prepared Sm and Co doped Sr hexaferrite for environmental applications\",\"authors\":\"Mai M. El-Masry, Rania Ramadan\",\"doi\":\"10.1007/s10450-024-00532-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanotechnology is offering solutions to water contamination issues, as new techniques are needed to improve the removal of harmful compounds from water bodies. Despite previous reviews on this topic, nanotechnology is paving the way for more effective water treatment methods. Understanding the substitute influence of divalent Co<sup>2+</sup> and rare earth elements Sm<sup>3+</sup> on the structure, magnetic, and removal efficiency of hexagonal ferrites requires an understanding of a sequence of SrFe<sub>12</sub>O<sub>19</sub>, SrFe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub>, Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>12</sub>O<sub>19</sub>, and Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub> M-type hexagonal ferrites were prepared using the flash technique. The XRD examination revealed that the crystallized material formed a single M-type hexagonal phase. The characteristics of M-type hexagonal ferrites include absorption bands with low wavenumbers in the FTIR curves between 400 to 1000 cm<sup>−1</sup>. There was a variation in magnetic characteristics with the replacement of Sm<sup>3+</sup> and Co<sup>2+</sup> doping, possibly due to the spin canting impact created by rare earth Sm<sup>3+</sup> and Co<sup>2+</sup> ions. The goal of the research is to explore the potential of doping magnetic hexaferrites and its influence in wastewater treatment. Various parameters, such as pH and contact duration, that influence the adsorption of lead ions from aqueous solutions were also examined. At pH 7 and 25 °C after 70min, the maximal removal efficiency of the Sr<sub>0.95</sub>Sm<sub>0.05</sub>Fe<sub>11.5</sub>Co<sub>0.5</sub>O<sub>19</sub> was found to be 99%. Magnetic separation was carried out by applying an external magnetic field using a permanent magnet. The strong magnetization of the ferrites (51–58 emu/g) enabled the rapid separation of the magnetic particles from the solution, with over 95% of the ferrite particles being recovered within 10 to 70 min. The Freundlich isotherm model fitted all the isotherm data. Adsorption kinetics were explained by the pseudo-first-order, pseudo-second order, and intraparticle diffusion models. The investigated samples’ adsorption capacity remained efficient till 5 cycles.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 8\",\"pages\":\"2017 - 2035\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10450-024-00532-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00532-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00532-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Flash combustion prepared Sm and Co doped Sr hexaferrite for environmental applications
Nanotechnology is offering solutions to water contamination issues, as new techniques are needed to improve the removal of harmful compounds from water bodies. Despite previous reviews on this topic, nanotechnology is paving the way for more effective water treatment methods. Understanding the substitute influence of divalent Co2+ and rare earth elements Sm3+ on the structure, magnetic, and removal efficiency of hexagonal ferrites requires an understanding of a sequence of SrFe12O19, SrFe11.5Co0.5O19, Sr0.95Sm0.05Fe12O19, and Sr0.95Sm0.05Fe11.5Co0.5O19 M-type hexagonal ferrites were prepared using the flash technique. The XRD examination revealed that the crystallized material formed a single M-type hexagonal phase. The characteristics of M-type hexagonal ferrites include absorption bands with low wavenumbers in the FTIR curves between 400 to 1000 cm−1. There was a variation in magnetic characteristics with the replacement of Sm3+ and Co2+ doping, possibly due to the spin canting impact created by rare earth Sm3+ and Co2+ ions. The goal of the research is to explore the potential of doping magnetic hexaferrites and its influence in wastewater treatment. Various parameters, such as pH and contact duration, that influence the adsorption of lead ions from aqueous solutions were also examined. At pH 7 and 25 °C after 70min, the maximal removal efficiency of the Sr0.95Sm0.05Fe11.5Co0.5O19 was found to be 99%. Magnetic separation was carried out by applying an external magnetic field using a permanent magnet. The strong magnetization of the ferrites (51–58 emu/g) enabled the rapid separation of the magnetic particles from the solution, with over 95% of the ferrite particles being recovered within 10 to 70 min. The Freundlich isotherm model fitted all the isotherm data. Adsorption kinetics were explained by the pseudo-first-order, pseudo-second order, and intraparticle diffusion models. The investigated samples’ adsorption capacity remained efficient till 5 cycles.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.