德涅斯特河流域自然水质经济利用分析

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Water Chemistry and Technology Pub Date : 2024-11-08 DOI:10.3103/S1063455X24060031
V. V. Chobotar, V. A. Kopilevich, O. O. Kravchenko
{"title":"德涅斯特河流域自然水质经济利用分析","authors":"V. V. Chobotar,&nbsp;V. A. Kopilevich,&nbsp;O. O. Kravchenko","doi":"10.3103/S1063455X24060031","DOIUrl":null,"url":null,"abstract":"<p>Small rivers and other surface and groundwater sources form the basis for the functioning of river basin systems, shaping streamflow, providing water supply for rural areas, and supporting biodiversity. Local surface and groundwater sources are extremely sensitive to anthropogenic impacts and climate change. Changes in the quality and quantity of water in these sources are a primary factor influencing their use for various purposes, objects, methods, and technical conditions. Therefore, the research aimed to assess the quality of natural waters in the southern part of the Mohyliv-Podilskyi district, within the basin of the small river Kotlubayevka (a right tributary of the Dniester River). The primary research methods were analytical and statistical. The analytical method was used to determine the chemical composition of water samples according to standardized procedures. The statistical method was used to find out the reliability of measurement results and to provide a generalized assessment of water quality. Experimental results were processed for water samples based on ecological and sanitary criteria from eight potential sources of economic use located along the slopes of the Dniester and Kotlubayevka river basins, ranging from elevations of 215–206 to 78–55 m a.s.l. According to the ecological classification of surface water quality, the studied sources are classified as fresh oligotrophic (class I), and based on ion composition criteria, they are categorized as bicarbonate waters of type I (<span>\\({\\text{HCO}}_{3}^{ - }\\)</span> &gt; Ca<sup>2+</sup> + Mg<sup>2+</sup>). The study identified a trend of water source contamination in the research area concerning copper, iron (Fe<sub>total</sub>), and saprophytic bacteria <i>Escherichia coli</i>. A generalized ecological assessment of water was calculated using block indices for salinity composition, ecological-sanitary, and specific toxic indicators, which ranged from 2.33 to 3.00 along the slope above the river currents. The results indicate that the quality of the studied water sources ranges from “very good,” “clean,” to “good,” “fairly clean.” However, based on the block index for specific toxic indicators, the water quality tends to approach “fairly good” or “slightly polluted.” Among the water contaminants, elevated levels of Fe<sub>total</sub>, Cu<sup>2+</sup>, and <i>E. coli</i> primarily contribute to the deterioration of water quality and safety. Iron and copper contamination should be regarded as a natural factor, while microbiological contamination by <i>E. coli</i> should be considered a result of anthropogenic impact. The obtained research results impose limitations on the economic use of certain water sources, particularly in agricultural production.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 6","pages":"636 - 644"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Natural Water Quality in the Dniester River Basin for Economic Utilization\",\"authors\":\"V. V. Chobotar,&nbsp;V. A. Kopilevich,&nbsp;O. O. Kravchenko\",\"doi\":\"10.3103/S1063455X24060031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small rivers and other surface and groundwater sources form the basis for the functioning of river basin systems, shaping streamflow, providing water supply for rural areas, and supporting biodiversity. Local surface and groundwater sources are extremely sensitive to anthropogenic impacts and climate change. Changes in the quality and quantity of water in these sources are a primary factor influencing their use for various purposes, objects, methods, and technical conditions. Therefore, the research aimed to assess the quality of natural waters in the southern part of the Mohyliv-Podilskyi district, within the basin of the small river Kotlubayevka (a right tributary of the Dniester River). The primary research methods were analytical and statistical. The analytical method was used to determine the chemical composition of water samples according to standardized procedures. The statistical method was used to find out the reliability of measurement results and to provide a generalized assessment of water quality. Experimental results were processed for water samples based on ecological and sanitary criteria from eight potential sources of economic use located along the slopes of the Dniester and Kotlubayevka river basins, ranging from elevations of 215–206 to 78–55 m a.s.l. According to the ecological classification of surface water quality, the studied sources are classified as fresh oligotrophic (class I), and based on ion composition criteria, they are categorized as bicarbonate waters of type I (<span>\\\\({\\\\text{HCO}}_{3}^{ - }\\\\)</span> &gt; Ca<sup>2+</sup> + Mg<sup>2+</sup>). The study identified a trend of water source contamination in the research area concerning copper, iron (Fe<sub>total</sub>), and saprophytic bacteria <i>Escherichia coli</i>. A generalized ecological assessment of water was calculated using block indices for salinity composition, ecological-sanitary, and specific toxic indicators, which ranged from 2.33 to 3.00 along the slope above the river currents. The results indicate that the quality of the studied water sources ranges from “very good,” “clean,” to “good,” “fairly clean.” However, based on the block index for specific toxic indicators, the water quality tends to approach “fairly good” or “slightly polluted.” Among the water contaminants, elevated levels of Fe<sub>total</sub>, Cu<sup>2+</sup>, and <i>E. coli</i> primarily contribute to the deterioration of water quality and safety. Iron and copper contamination should be regarded as a natural factor, while microbiological contamination by <i>E. coli</i> should be considered a result of anthropogenic impact. The obtained research results impose limitations on the economic use of certain water sources, particularly in agricultural production.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":\"46 6\",\"pages\":\"636 - 644\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24060031\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24060031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

小河流及其他地表水和地下水源是流域系统运作的基础,它们决定着溪流的流向,为农村地区提供水源,并支持着生物多样性。当地地表水和地下水源对人为影响和气候变化极为敏感。这些水源的水质和水量的变化是影响其各种用途、对象、方法和技术条件的主要因素。因此,该研究旨在评估莫希利夫-波季利斯基区南部科特卢巴耶夫卡小河(德涅斯特河的右支流)流域内的天然水质量。主要研究方法是分析法和统计法。分析方法用于根据标准化程序确定水样的化学成分。统计方法用于确定测量结果的可靠性,并对水质进行综合评估。实验结果是根据生态和卫生标准对来自德涅斯特河和科特卢巴耶夫卡河流域沿岸海拔 215-206 米至 78-55 米的 8 个潜在经济用途水源地的水样进行处理后得出的。根据地表水水质的生态分类,所研究的水源被归类为寡营养淡水(I 类),根据离子组成标准,它们被归类为 I 类重碳酸盐水(\({text{HCO}}_{3}^{ - }\) > Ca2+ + Mg2+)。研究发现,研究区域的水源污染趋势涉及铜、铁(总铁)和大肠杆菌。使用盐度组成、生态卫生和特定毒性指标的块指数计算了水的总体生态评估,沿着河流上方的斜坡,这些指标从 2.33 到 3.00 不等。结果表明,研究水源的水质从 "很好"、"干净 "到 "好"、"相当干净 "不等。然而,根据特定有毒指标的区块指数,水质趋近于 "相当好 "或 "轻微污染"。在水污染物中,总铁、Cu2+ 和大肠杆菌含量的升高是导致水质和安全恶化的主要原因。铁和铜的污染应视为自然因素,而大肠杆菌的微生物污染则应视为人为影响的结果。研究结果限制了某些水源的经济利用,尤其是在农业生产中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Natural Water Quality in the Dniester River Basin for Economic Utilization

Small rivers and other surface and groundwater sources form the basis for the functioning of river basin systems, shaping streamflow, providing water supply for rural areas, and supporting biodiversity. Local surface and groundwater sources are extremely sensitive to anthropogenic impacts and climate change. Changes in the quality and quantity of water in these sources are a primary factor influencing their use for various purposes, objects, methods, and technical conditions. Therefore, the research aimed to assess the quality of natural waters in the southern part of the Mohyliv-Podilskyi district, within the basin of the small river Kotlubayevka (a right tributary of the Dniester River). The primary research methods were analytical and statistical. The analytical method was used to determine the chemical composition of water samples according to standardized procedures. The statistical method was used to find out the reliability of measurement results and to provide a generalized assessment of water quality. Experimental results were processed for water samples based on ecological and sanitary criteria from eight potential sources of economic use located along the slopes of the Dniester and Kotlubayevka river basins, ranging from elevations of 215–206 to 78–55 m a.s.l. According to the ecological classification of surface water quality, the studied sources are classified as fresh oligotrophic (class I), and based on ion composition criteria, they are categorized as bicarbonate waters of type I (\({\text{HCO}}_{3}^{ - }\) > Ca2+ + Mg2+). The study identified a trend of water source contamination in the research area concerning copper, iron (Fetotal), and saprophytic bacteria Escherichia coli. A generalized ecological assessment of water was calculated using block indices for salinity composition, ecological-sanitary, and specific toxic indicators, which ranged from 2.33 to 3.00 along the slope above the river currents. The results indicate that the quality of the studied water sources ranges from “very good,” “clean,” to “good,” “fairly clean.” However, based on the block index for specific toxic indicators, the water quality tends to approach “fairly good” or “slightly polluted.” Among the water contaminants, elevated levels of Fetotal, Cu2+, and E. coli primarily contribute to the deterioration of water quality and safety. Iron and copper contamination should be regarded as a natural factor, while microbiological contamination by E. coli should be considered a result of anthropogenic impact. The obtained research results impose limitations on the economic use of certain water sources, particularly in agricultural production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
期刊最新文献
Floating Amphiphilic Biomass-Based Material Obtained by Plasma Processing for Enhanced Wastewater Remediation Preparation of New Carbonaceous Adsorbents Based on Agricultural Waste and Its Application to the Elimination of Crystal Violet Dye from Water Media The Potential of Acid Hydrolysis as Pre-Treatment for Improved Nutrient Recovery from Domestic Wastewater Photometric Analysis for Trichlorophenoxyacetic Acid in Water and Bottom Sediments with the Use of Extraction Assessing the Presence of Metals in Surface Waters: A Case Study Conducted in Algeria Using a Combination of Artificial Neural Networks and Multiple Indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1