通过电解质浓度调节利用 Co-ZnO/MoS2 纳米复合材料定制二氧化碳检测功能

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-10-28 DOI:10.1007/s10853-024-10331-1
Swathi Yempally, Maryam Al-Ejji, Shabi Abbas Zaidi, Deepalekshmi Ponnamma
{"title":"通过电解质浓度调节利用 Co-ZnO/MoS2 纳米复合材料定制二氧化碳检测功能","authors":"Swathi Yempally,&nbsp;Maryam Al-Ejji,&nbsp;Shabi Abbas Zaidi,&nbsp;Deepalekshmi Ponnamma","doi":"10.1007/s10853-024-10331-1","DOIUrl":null,"url":null,"abstract":"<div><p>The current study explores a new approach to investigate the CO<sub>2</sub> detection capabilities of cobalt-doped zinc oxide (Co-ZnO) combined with molybdenum sulfide (MoS<sub>2</sub>) hybrid nanomaterials Co-ZnO/MoS<sub>2</sub> (CZM). The hydrothermally synthesized CZM composites provide unique structural and compositional properties, with 25 nm as their longest dimension (length), and specific lattice structure. CZM-based electrodes are developed by preparing the nanomaterial-dispersed ink, and potentiometric studies explore the optimal sensing performance. We found significant enhancements in sensitivity, reaction time, and reduction efficiency by systematically changing the electrolyte concentration in the electrode cell. Bode and Nyquist plots explain the influence of electrolyte concentration and the nanomaterial synergy in CO<sub>2</sub> sensing and conversion with the 0.1 N electrolyte with the maximum efficiency. By offering important insights into how the electrolyte content affects the performance of Co-ZnO/MoS<sub>2</sub> nanocomposite sensors, this study advances the field of CO<sub>2</sub> sensing technology. Further, the nanomaterials extend their applicability in environmental monitoring, evaluating indoor air quality, and industrial processes.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 42","pages":"19875 - 19891"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-024-10331-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Tailoring CO2 detection capabilities using Co-ZnO/MoS2 nanocomposites through electrolyte concentration modulation\",\"authors\":\"Swathi Yempally,&nbsp;Maryam Al-Ejji,&nbsp;Shabi Abbas Zaidi,&nbsp;Deepalekshmi Ponnamma\",\"doi\":\"10.1007/s10853-024-10331-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study explores a new approach to investigate the CO<sub>2</sub> detection capabilities of cobalt-doped zinc oxide (Co-ZnO) combined with molybdenum sulfide (MoS<sub>2</sub>) hybrid nanomaterials Co-ZnO/MoS<sub>2</sub> (CZM). The hydrothermally synthesized CZM composites provide unique structural and compositional properties, with 25 nm as their longest dimension (length), and specific lattice structure. CZM-based electrodes are developed by preparing the nanomaterial-dispersed ink, and potentiometric studies explore the optimal sensing performance. We found significant enhancements in sensitivity, reaction time, and reduction efficiency by systematically changing the electrolyte concentration in the electrode cell. Bode and Nyquist plots explain the influence of electrolyte concentration and the nanomaterial synergy in CO<sub>2</sub> sensing and conversion with the 0.1 N electrolyte with the maximum efficiency. By offering important insights into how the electrolyte content affects the performance of Co-ZnO/MoS<sub>2</sub> nanocomposite sensors, this study advances the field of CO<sub>2</sub> sensing technology. Further, the nanomaterials extend their applicability in environmental monitoring, evaluating indoor air quality, and industrial processes.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 42\",\"pages\":\"19875 - 19891\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10853-024-10331-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10331-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10331-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了一种新方法来研究掺钴氧化锌(Co-ZnO)与硫化钼(MoS2)混合纳米材料 Co-ZnO/MoS2 (CZM) 的二氧化碳检测能力。水热合成的 CZM 复合材料具有独特的结构和组成特性,其最长尺寸(长度)为 25 纳米,并具有特定的晶格结构。通过制备纳米材料分散墨水开发了基于 CZM 的电极,并通过电位计研究探索了最佳传感性能。我们发现,通过系统地改变电极池中的电解质浓度,灵敏度、反应时间和还原效率都有显著提高。Bode 和 Nyquist 图解释了电解质浓度和纳米材料协同作用对二氧化碳传感和转化的影响,其中 0.1 N 电解质的效率最高。该研究为了解电解质含量如何影响 Co-ZnO/MoS2 纳米复合传感器的性能提供了重要见解,从而推动了二氧化碳传感技术领域的发展。此外,该纳米材料还扩展了其在环境监测、室内空气质量评估和工业过程中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring CO2 detection capabilities using Co-ZnO/MoS2 nanocomposites through electrolyte concentration modulation

The current study explores a new approach to investigate the CO2 detection capabilities of cobalt-doped zinc oxide (Co-ZnO) combined with molybdenum sulfide (MoS2) hybrid nanomaterials Co-ZnO/MoS2 (CZM). The hydrothermally synthesized CZM composites provide unique structural and compositional properties, with 25 nm as their longest dimension (length), and specific lattice structure. CZM-based electrodes are developed by preparing the nanomaterial-dispersed ink, and potentiometric studies explore the optimal sensing performance. We found significant enhancements in sensitivity, reaction time, and reduction efficiency by systematically changing the electrolyte concentration in the electrode cell. Bode and Nyquist plots explain the influence of electrolyte concentration and the nanomaterial synergy in CO2 sensing and conversion with the 0.1 N electrolyte with the maximum efficiency. By offering important insights into how the electrolyte content affects the performance of Co-ZnO/MoS2 nanocomposite sensors, this study advances the field of CO2 sensing technology. Further, the nanomaterials extend their applicability in environmental monitoring, evaluating indoor air quality, and industrial processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
The influence of entanglement degree controlled by complex shear field on the performance of long-chain branched polypropylene Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process Crystallization behavior and thermal properties of octa-phenyl-substituted silsesquioxane-modified polylactide (PLA) Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications High-security organic PVDF-coated SiO2 aerogel lithium battery separator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1