Si-Young Ahn, Chang-Dae Lee, Ja Jung Ku, Sanghyun Lee, Sullim Lee
{"title":"鱼腥草提取物的抗衰老潜力:鱼腥草碱和同鱼腥草碱在皮肤保护中的作用","authors":"Si-Young Ahn, Chang-Dae Lee, Ja Jung Ku, Sanghyun Lee, Sullim Lee","doi":"10.1186/s13765-024-00951-1","DOIUrl":null,"url":null,"abstract":"<div><p>Photoaging damages the skin layers. The tumor necrosis factor-alpha (TNF-α) plays a crucial role in the central mechanism of photoaging. TNF-α production leads to direct damage to skin cells and facilitates the degradation of vital extracellular matrix (ECM) proteins. TNF-α stimulates matrix metalloproteinase-1 (MMP-1) activation This accelerates the loss of skin elasticity and wrinkle formation. Thus, preventing photoaging and delaying the skin aging process are important research objectives, and the development of new anti-aging substances that target the TNF-α and MMP-1 pathways is promising. In this context, the efficacies of four extracts derived from two types of <i>Cephalotaxus harringtonia</i> (CH) buds (CH-10Y-buds, CH-200Y-buds) and leaves (CH-10Y-leaves, CH-200Y-leaves) were investigated, exhibiting a significant reduction in reactive oxygen species (ROS). Among the four extracts, CH-10Y-buds was the most effective in reducing ROS and exhibited the highest amounts of harringtonine and homoharringtonine. The activities of harringtonine, homoharringtonine, and ginkgetin were evaluated; harringtonine exhibited a high efficacy in inhibiting TNF-α-induced inflammatory responses and MMP-1 activation, thereby reducing collagen degradation. These findings suggest that CH-10Y-buds and their components herringtonin are promising candidates for preventing damage caused by photoaging. Our results can facilitate the development of new methods for maintaining skin health and inhibiting the skin aging process. Further research is necessary to comprehensively evaluate the potential efficacy of these candidate substances and investigate their applicability to actual skin. Such studies will aid in the development of more effective anti-aging strategies in the future.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00951-1","citationCount":"0","resultStr":"{\"title\":\"Anti-aging potential of Cephalotaxus harringtonia extracts: the role of harringtonine and homoharringtonine in skin protection\",\"authors\":\"Si-Young Ahn, Chang-Dae Lee, Ja Jung Ku, Sanghyun Lee, Sullim Lee\",\"doi\":\"10.1186/s13765-024-00951-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoaging damages the skin layers. The tumor necrosis factor-alpha (TNF-α) plays a crucial role in the central mechanism of photoaging. TNF-α production leads to direct damage to skin cells and facilitates the degradation of vital extracellular matrix (ECM) proteins. TNF-α stimulates matrix metalloproteinase-1 (MMP-1) activation This accelerates the loss of skin elasticity and wrinkle formation. Thus, preventing photoaging and delaying the skin aging process are important research objectives, and the development of new anti-aging substances that target the TNF-α and MMP-1 pathways is promising. In this context, the efficacies of four extracts derived from two types of <i>Cephalotaxus harringtonia</i> (CH) buds (CH-10Y-buds, CH-200Y-buds) and leaves (CH-10Y-leaves, CH-200Y-leaves) were investigated, exhibiting a significant reduction in reactive oxygen species (ROS). Among the four extracts, CH-10Y-buds was the most effective in reducing ROS and exhibited the highest amounts of harringtonine and homoharringtonine. The activities of harringtonine, homoharringtonine, and ginkgetin were evaluated; harringtonine exhibited a high efficacy in inhibiting TNF-α-induced inflammatory responses and MMP-1 activation, thereby reducing collagen degradation. These findings suggest that CH-10Y-buds and their components herringtonin are promising candidates for preventing damage caused by photoaging. Our results can facilitate the development of new methods for maintaining skin health and inhibiting the skin aging process. Further research is necessary to comprehensively evaluate the potential efficacy of these candidate substances and investigate their applicability to actual skin. Such studies will aid in the development of more effective anti-aging strategies in the future.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00951-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-024-00951-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00951-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Anti-aging potential of Cephalotaxus harringtonia extracts: the role of harringtonine and homoharringtonine in skin protection
Photoaging damages the skin layers. The tumor necrosis factor-alpha (TNF-α) plays a crucial role in the central mechanism of photoaging. TNF-α production leads to direct damage to skin cells and facilitates the degradation of vital extracellular matrix (ECM) proteins. TNF-α stimulates matrix metalloproteinase-1 (MMP-1) activation This accelerates the loss of skin elasticity and wrinkle formation. Thus, preventing photoaging and delaying the skin aging process are important research objectives, and the development of new anti-aging substances that target the TNF-α and MMP-1 pathways is promising. In this context, the efficacies of four extracts derived from two types of Cephalotaxus harringtonia (CH) buds (CH-10Y-buds, CH-200Y-buds) and leaves (CH-10Y-leaves, CH-200Y-leaves) were investigated, exhibiting a significant reduction in reactive oxygen species (ROS). Among the four extracts, CH-10Y-buds was the most effective in reducing ROS and exhibited the highest amounts of harringtonine and homoharringtonine. The activities of harringtonine, homoharringtonine, and ginkgetin were evaluated; harringtonine exhibited a high efficacy in inhibiting TNF-α-induced inflammatory responses and MMP-1 activation, thereby reducing collagen degradation. These findings suggest that CH-10Y-buds and their components herringtonin are promising candidates for preventing damage caused by photoaging. Our results can facilitate the development of new methods for maintaining skin health and inhibiting the skin aging process. Further research is necessary to comprehensively evaluate the potential efficacy of these candidate substances and investigate their applicability to actual skin. Such studies will aid in the development of more effective anti-aging strategies in the future.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.