用于高分辨率海水温度重建的海洋贝壳文石的基质校正 SIMS 原位氧同位素分析

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2024-11-05 DOI:10.1029/2024GC011577
Oliver M. Medd, Laura M. Otter, Ian S. Williams, Richard A. Stern, Michael W. Förster, Stephen M. Eggins, Laura Rodriguez-Sanz, Nerilie J. Abram, Miaohong He, Michael J. Ellwood, Jessica A. Hargreaves, Stewart J. Fallon, Brett M. Knowles
{"title":"用于高分辨率海水温度重建的海洋贝壳文石的基质校正 SIMS 原位氧同位素分析","authors":"Oliver M. Medd,&nbsp;Laura M. Otter,&nbsp;Ian S. Williams,&nbsp;Richard A. Stern,&nbsp;Michael W. Förster,&nbsp;Stephen M. Eggins,&nbsp;Laura Rodriguez-Sanz,&nbsp;Nerilie J. Abram,&nbsp;Miaohong He,&nbsp;Michael J. Ellwood,&nbsp;Jessica A. Hargreaves,&nbsp;Stewart J. Fallon,&nbsp;Brett M. Knowles","doi":"10.1029/2024GC011577","DOIUrl":null,"url":null,"abstract":"<p>Marine shells incorporate oxygen isotope signatures during growth, creating valuable records of seawater temperature and marine oxygen isotopic compositions. Secondary ion mass spectrometry (SIMS) measures these compositions in situ at finer length-scales than traditional stable isotope analyses. However, determining oxygen isotope ratios in aragonite, the most common shell mineral, is hampered by a lack of ideal reference materials, limiting the accuracy of SIMS-based seawater temperature reconstructions. Here, we tested the capability of SIMS to produce seawater temperature reconstructions despite the matrix calibration challenges associated with aragonite. We cultured <i>Anadara trapezia</i> bivalves at four controlled seawater temperatures (13–28°C) and used strontium labeling to mark the start of the temperature-controlled shell increment, allowing for more spatially precise SIMS analysis. An improved matrix calibration was developed to ensure more accurate bio-aragonite analyses that addressed matrix differences between the pure abiotic reference materials and the bio-aragonite samples with intricate mineral-organic architectures and distinct minor and trace element compositions. We regressed SIMS-IRMS biases of abiotic and biogenic aragonites that account for their systematic differences in major, minor, and trace elements, allowing for more accurate SIMS analyses of the temperature-controlled shell increment. The thorough matrix calibration allowed us to provide a SIMS-based seawater-corrected oxygen isotope thermometer of T(°C) = 23.05 ± 0.36 − 4.48 · (δ<sup>18</sup>O<sub>aragonite</sub> [‰ VPDB] − δ<sup>18</sup>O<sub>seawater</sub> [‰ VSMOW] ± 0.25) and 10<sup>3</sup>ln<i>α</i><sub>aragonite-seawater</sub> = (17.78 ± 0.88) · 10<sup>3</sup>/T (K) − (29.44 ± 2.40) that agrees with existing aragonitic IRMS-based thermometer relationships and improves the applicability of SIMS-based paleo-environmental reconstructions of marine bio-aragonites.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011577","citationCount":"0","resultStr":"{\"title\":\"Matrix Corrected SIMS In Situ Oxygen Isotope Analyses of Marine Shell Aragonite for High Resolution Seawater Temperature Reconstructions\",\"authors\":\"Oliver M. Medd,&nbsp;Laura M. Otter,&nbsp;Ian S. Williams,&nbsp;Richard A. Stern,&nbsp;Michael W. Förster,&nbsp;Stephen M. Eggins,&nbsp;Laura Rodriguez-Sanz,&nbsp;Nerilie J. Abram,&nbsp;Miaohong He,&nbsp;Michael J. Ellwood,&nbsp;Jessica A. Hargreaves,&nbsp;Stewart J. Fallon,&nbsp;Brett M. Knowles\",\"doi\":\"10.1029/2024GC011577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine shells incorporate oxygen isotope signatures during growth, creating valuable records of seawater temperature and marine oxygen isotopic compositions. Secondary ion mass spectrometry (SIMS) measures these compositions in situ at finer length-scales than traditional stable isotope analyses. However, determining oxygen isotope ratios in aragonite, the most common shell mineral, is hampered by a lack of ideal reference materials, limiting the accuracy of SIMS-based seawater temperature reconstructions. Here, we tested the capability of SIMS to produce seawater temperature reconstructions despite the matrix calibration challenges associated with aragonite. We cultured <i>Anadara trapezia</i> bivalves at four controlled seawater temperatures (13–28°C) and used strontium labeling to mark the start of the temperature-controlled shell increment, allowing for more spatially precise SIMS analysis. An improved matrix calibration was developed to ensure more accurate bio-aragonite analyses that addressed matrix differences between the pure abiotic reference materials and the bio-aragonite samples with intricate mineral-organic architectures and distinct minor and trace element compositions. We regressed SIMS-IRMS biases of abiotic and biogenic aragonites that account for their systematic differences in major, minor, and trace elements, allowing for more accurate SIMS analyses of the temperature-controlled shell increment. The thorough matrix calibration allowed us to provide a SIMS-based seawater-corrected oxygen isotope thermometer of T(°C) = 23.05 ± 0.36 − 4.48 · (δ<sup>18</sup>O<sub>aragonite</sub> [‰ VPDB] − δ<sup>18</sup>O<sub>seawater</sub> [‰ VSMOW] ± 0.25) and 10<sup>3</sup>ln<i>α</i><sub>aragonite-seawater</sub> = (17.78 ± 0.88) · 10<sup>3</sup>/T (K) − (29.44 ± 2.40) that agrees with existing aragonitic IRMS-based thermometer relationships and improves the applicability of SIMS-based paleo-environmental reconstructions of marine bio-aragonites.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011577\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011577\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011577","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

海洋贝壳在生长过程中结合了氧同位素特征,为海水温度和海洋氧同位素组成提供了宝贵的记录。与传统的稳定同位素分析相比,二次离子质谱法(SIMS)能以更精细的长度尺度现场测量这些组成。然而,由于缺乏理想的参考材料,在最常见的贝壳矿物文石中确定氧同位素比率受到了阻碍,从而限制了基于 SIMS 的海水温度重建的准确性。在此,我们测试了 SIMS 制作海水温度重建的能力,尽管文石存在基质校准难题。我们在四种可控海水温度(13-28°C)下培养了 Anadara trapezia 双壳贝,并使用锶标记来标记温控贝壳增量的起始点,从而实现了更精确的空间 SIMS 分析。为确保生物霰石分析更加精确,我们开发了一种改进的基质校准方法,以解决纯粹非生物参考材料与生物霰石样品之间的基质差异问题,生物霰石样品具有复杂的矿物-有机结构和独特的微量元素成分。我们对非生物文石和生物文石的 SIMS-IRMS 偏差进行了回归,解释了它们在主要、次要和微量元素方面的系统性差异,从而能够对温控贝壳增量进行更精确的 SIMS 分析。彻底的基质校准使我们能够提供基于 SIMS 的海水校正氧同位素温度计,即 T(°C) = 23.05 ± 0.36 - 4.48 - (δ18Oaragonite [‰ VPDB] - δ18Oseawater [‰ VSMOW] ± 0.25) 和 103lnαaragonite-seawater = (17.78±0.88)-103/T(K)-(29.44±2.40),与现有的基于IRMS的文石温度计关系一致,提高了基于SIMS的海洋生物文石古环境重建的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix Corrected SIMS In Situ Oxygen Isotope Analyses of Marine Shell Aragonite for High Resolution Seawater Temperature Reconstructions

Marine shells incorporate oxygen isotope signatures during growth, creating valuable records of seawater temperature and marine oxygen isotopic compositions. Secondary ion mass spectrometry (SIMS) measures these compositions in situ at finer length-scales than traditional stable isotope analyses. However, determining oxygen isotope ratios in aragonite, the most common shell mineral, is hampered by a lack of ideal reference materials, limiting the accuracy of SIMS-based seawater temperature reconstructions. Here, we tested the capability of SIMS to produce seawater temperature reconstructions despite the matrix calibration challenges associated with aragonite. We cultured Anadara trapezia bivalves at four controlled seawater temperatures (13–28°C) and used strontium labeling to mark the start of the temperature-controlled shell increment, allowing for more spatially precise SIMS analysis. An improved matrix calibration was developed to ensure more accurate bio-aragonite analyses that addressed matrix differences between the pure abiotic reference materials and the bio-aragonite samples with intricate mineral-organic architectures and distinct minor and trace element compositions. We regressed SIMS-IRMS biases of abiotic and biogenic aragonites that account for their systematic differences in major, minor, and trace elements, allowing for more accurate SIMS analyses of the temperature-controlled shell increment. The thorough matrix calibration allowed us to provide a SIMS-based seawater-corrected oxygen isotope thermometer of T(°C) = 23.05 ± 0.36 − 4.48 · (δ18Oaragonite [‰ VPDB] − δ18Oseawater [‰ VSMOW] ± 0.25) and 103lnαaragonite-seawater = (17.78 ± 0.88) · 103/T (K) − (29.44 ± 2.40) that agrees with existing aragonitic IRMS-based thermometer relationships and improves the applicability of SIMS-based paleo-environmental reconstructions of marine bio-aragonites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
The Influence of Rotation on the Preservation of Heterogeneities in Magma Oceans Responses of Sr, Nd, and S Isotopes of Seawater to the Volcanic Eruptions During the Early Middle Triassic, South China Influence of Grain Size Evolution on Mantle Plume and LLSVP Dynamics Monitoring Salt Domes Used for Energy Storage With Microseismicity: Insights for a Carbon-Neutral Future Insights Into Magma Reservoir Dynamics From a Global Comparison of Volcanic and Plutonic Zircon Trace Element Variability in Individual Hand Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1