具有滑移窗口选择和在线参数修改功能的三相电压源变流器优化控制集扩展方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-26 DOI:10.1049/pel2.12733
Linqiang Hu, Wanjun Lei, Zhongxiu Xiao, Xing Sun
{"title":"具有滑移窗口选择和在线参数修改功能的三相电压源变流器优化控制集扩展方法","authors":"Linqiang Hu,&nbsp;Wanjun Lei,&nbsp;Zhongxiu Xiao,&nbsp;Xing Sun","doi":"10.1049/pel2.12733","DOIUrl":null,"url":null,"abstract":"<p>Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12733","citationCount":"0","resultStr":"{\"title\":\"Optimal control set expansion method for three-phase voltage source converter with slip window selection and online parameter modification\",\"authors\":\"Linqiang Hu,&nbsp;Wanjun Lei,&nbsp;Zhongxiu Xiao,&nbsp;Xing Sun\",\"doi\":\"10.1049/pel2.12733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12733\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12733\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12733","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有限控制集模型预测控制(FCS-MPC)已广泛应用于三相电压源变流器(VSC)的控制,但其控制性能在低采样频率时急剧下降。本文提出了一种带有滑动窗口选择和在线参数修改的优化控制集扩展方法,以提高 FCS-MPC 的性能和鲁棒性。首先,比较了不同控制集扩展方法的性能。然后,提出了一种包含 12 个虚拟向量的最优控制集扩展方法。最后,提出了滑移窗口选择策略和在线参数修改算法,以分别减轻计算负担和提高控制器的鲁棒性。实验结果表明,所提出的方法显著提高了控制精度,并具有良好的鲁棒性和抗干扰能力。与现有的典型 MPC 策略相比,所提出的方法能以更低的开关频率获得更好的电流质量,所需的计算量也更少。此外,所提方法设计简单,无需调整权重系数,增加了方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal control set expansion method for three-phase voltage source converter with slip window selection and online parameter modification

Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1