锆基金属有机框架中意想不到的光驱动链节间空穴传输

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-11-08 DOI:10.1021/acs.jpclett.4c02848
Boris V. Kramar, Anna S. Bondarenko, Sydney M. Koehne, Benjamin T. Diroll, Xiaodan Wang, Haofan Yang, Kirk S. Schanze, Lin X. Chen, Roel Tempelaar, Joseph T. Hupp
{"title":"锆基金属有机框架中意想不到的光驱动链节间空穴传输","authors":"Boris V. Kramar, Anna S. Bondarenko, Sydney M. Koehne, Benjamin T. Diroll, Xiaodan Wang, Haofan Yang, Kirk S. Schanze, Lin X. Chen, Roel Tempelaar, Joseph T. Hupp","doi":"10.1021/acs.jpclett.4c02848","DOIUrl":null,"url":null,"abstract":"Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> node cores are indispensable building blocks for almost all zirconium-based metal–organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states. The CT state originates from a hole transfer process enabled by favorable energy alignment of the HOMOs of the node and linker. This alignment can be manipulated by changing the pH of the medium, which alters the protonation state of multiple oxy groups on the Zr-node. Thus, the acid–base chemistry of the node has a direct effect on the photophysics of the MOF following linker-localized electronic excitation. These new findings open opportunities to understand and exploit, for energy conversion, unconventional mechanisms of exciton formation and transport in MOFs.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpected Photodriven Linker-to-Node Hole Transfer in a Zirconium-Based Metal–Organic Framework\",\"authors\":\"Boris V. Kramar, Anna S. Bondarenko, Sydney M. Koehne, Benjamin T. Diroll, Xiaodan Wang, Haofan Yang, Kirk S. Schanze, Lin X. Chen, Roel Tempelaar, Joseph T. Hupp\",\"doi\":\"10.1021/acs.jpclett.4c02848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> node cores are indispensable building blocks for almost all zirconium-based metal–organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states. The CT state originates from a hole transfer process enabled by favorable energy alignment of the HOMOs of the node and linker. This alignment can be manipulated by changing the pH of the medium, which alters the protonation state of multiple oxy groups on the Zr-node. Thus, the acid–base chemistry of the node has a direct effect on the photophysics of the MOF following linker-localized electronic excitation. These new findings open opportunities to understand and exploit, for energy conversion, unconventional mechanisms of exciton formation and transport in MOFs.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02848\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Zr6(μ3-O)4(μ3-OH)4节点核心是几乎所有锆基金属有机框架不可或缺的构建模块。与氧化锆的绝缘性质相一致,它们通常被认为是电子惰性的。与这一观点相反,我们进行的光谱测量和计算表明,光激发 NU-601 (一种六连通的锆基 MOF)的发射来自以连接体为中心的局部激发态和连接体到节点的电荷转移 (CT) 态。CT 状态源于节点和连接体的 HOMO 的有利能量排列所促成的空穴传输过程。这种排列可以通过改变介质的 pH 值来实现,而介质的 pH 值会改变 Zr 节点上多个氧基团的质子化状态。因此,节点的酸碱化学性质会直接影响连接体定位电子激发后 MOF 的光物理学特性。这些新发现为了解和利用 MOF 中激子形成和传输的非常规机制进行能量转换提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unexpected Photodriven Linker-to-Node Hole Transfer in a Zirconium-Based Metal–Organic Framework
Zr63-O)43-OH)4 node cores are indispensable building blocks for almost all zirconium-based metal–organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states. The CT state originates from a hole transfer process enabled by favorable energy alignment of the HOMOs of the node and linker. This alignment can be manipulated by changing the pH of the medium, which alters the protonation state of multiple oxy groups on the Zr-node. Thus, the acid–base chemistry of the node has a direct effect on the photophysics of the MOF following linker-localized electronic excitation. These new findings open opportunities to understand and exploit, for energy conversion, unconventional mechanisms of exciton formation and transport in MOFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Multiband Spectrum Method for Quantifying the Ionic Contribution of Volume Strategy and Filler Strategy: Enhancing the Ionic Transport Channels for Polymeric Solid-State Batteries Structural, Solvent, and Temperature Effects on Protein Junction Conductance Vibrational Mode-Dependent Circular Dichroism of Jet-Cooled Styrene Oxide Manipulating the H2O2 Reactivity on Pristine Anatase TiO2 with Various Surface Features and Implications in Oxidation Reactions Resonant Vibrational Enhancement of Downhill Energy Transfer in the C-Phycocyanin Chromophore Dimer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1