Said Taboukhat, Aouatif Aamoum, Awatef Ayadi, Afef Shili, Anna Zawadzka, Karolina Waszkowska, Przemyslaw Płóciennik, Abdelkrim El-Ghayoury, Nabil Zouari, Robert Wielgosz, Anatoliy Andrushchak, Dominique Guichaoua, Anna Migalska-Zalas, Bouchta Sahraoui
{"title":"偶氮苯基噻吩衍生物中的高阶谐波和光致发光","authors":"Said Taboukhat, Aouatif Aamoum, Awatef Ayadi, Afef Shili, Anna Zawadzka, Karolina Waszkowska, Przemyslaw Płóciennik, Abdelkrim El-Ghayoury, Nabil Zouari, Robert Wielgosz, Anatoliy Andrushchak, Dominique Guichaoua, Anna Migalska-Zalas, Bouchta Sahraoui","doi":"10.1021/acs.jpcc.4c05126","DOIUrl":null,"url":null,"abstract":"This paper presents the linear and nonlinear optical (NLO) properties of two donor–acceptor organic materials, namely, <i>N</i>,<i>N</i>-dimethyl-4-((<i>E</i>)-(4-((<i>E</i>)-((5-phenylthiophen-2-yl)methylene)amino)phenyl)diazenyl)aniline <b>A</b> and (<i>E</i>)-4-((<i>E</i>)-(4-nitrophenyl)diazenyl)-<i>N</i>-((5-phenylthiophen-2-yl)methylene)aniline <b>B</b>. The studied compounds differ from each other by the nature of the substituent (donor or acceptor) on the azobenzene moiety, giving rise to D−π–D and D−π–A systems, respectively, for <b>A</b> and <b>B</b>. The thin-film deposition process was carried out using two different techniques: physical vapor deposition (PVD) and spin-coating. The aim of this work is to elucidate the influence of both the molecular structure of the compounds and thin-film deposition technique on their linear and nonlinear optical responses. Absorbance, photoluminescence, and decay time were used to measure the linear optical properties, while second and third harmonic generation techniques were used as tools for the nonlinear optical responses. The comparison of the results obtained for both <b>A</b> and <b>B</b> indicates a much better NLO performance with a value of 8.18 ± 0.09 pm V<sup>–1</sup> for compound <b>B</b> with a D−π–A shape and a value of 1.32 ± 0.07 pm V<sup>–1</sup> for compound <b>A</b> with a D−π–D structure. A more detailed analysis of the NLO properties revealed a noteworthy finding: the compounds exhibited considerably elevated third-order nonlinear susceptibility values in comparison to the reference material, with discrepancies spanning 1–2 orders of magnitude. Of particular interest was compound <b>B</b>, which demonstrated the highest <i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msub><mrow><msup><mrow><mi>&#x3C7;</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 3.128em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.844em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1002.84em, 2.56em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.844em; height: 0px;\"><span style=\"position: absolute; clip: rect(2.957em, 1001.59em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.594em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.63em, 4.378em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝜒<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.315em; left: 0.685em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">(</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">3</span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">)</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 1.594em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">elec</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.316em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math></script> value equal (225.91 ± 0.92) × 10<sup>–22</sup> m<sup>2</sup> V<sup>–2</sup>. The research was completed by theoretical quantum chemical calculations, which included the determination of dipole moments and the evaluation of molecular orbital frontier highest occupied molecular orbital and lowest unoccupied molecular orbital energies. These comprehensive studies demonstrate the significant potential of azo-based phenylthiophene derivatives in optoelectronics and quantum optics applications and also show that it is a valuable candidate for the production of organic light-emitting diodes.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"16 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Order Harmonics and Photoluminescence in Azo-Phenylthiophene Derivatives\",\"authors\":\"Said Taboukhat, Aouatif Aamoum, Awatef Ayadi, Afef Shili, Anna Zawadzka, Karolina Waszkowska, Przemyslaw Płóciennik, Abdelkrim El-Ghayoury, Nabil Zouari, Robert Wielgosz, Anatoliy Andrushchak, Dominique Guichaoua, Anna Migalska-Zalas, Bouchta Sahraoui\",\"doi\":\"10.1021/acs.jpcc.4c05126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the linear and nonlinear optical (NLO) properties of two donor–acceptor organic materials, namely, <i>N</i>,<i>N</i>-dimethyl-4-((<i>E</i>)-(4-((<i>E</i>)-((5-phenylthiophen-2-yl)methylene)amino)phenyl)diazenyl)aniline <b>A</b> and (<i>E</i>)-4-((<i>E</i>)-(4-nitrophenyl)diazenyl)-<i>N</i>-((5-phenylthiophen-2-yl)methylene)aniline <b>B</b>. The studied compounds differ from each other by the nature of the substituent (donor or acceptor) on the azobenzene moiety, giving rise to D−π–D and D−π–A systems, respectively, for <b>A</b> and <b>B</b>. The thin-film deposition process was carried out using two different techniques: physical vapor deposition (PVD) and spin-coating. The aim of this work is to elucidate the influence of both the molecular structure of the compounds and thin-film deposition technique on their linear and nonlinear optical responses. Absorbance, photoluminescence, and decay time were used to measure the linear optical properties, while second and third harmonic generation techniques were used as tools for the nonlinear optical responses. The comparison of the results obtained for both <b>A</b> and <b>B</b> indicates a much better NLO performance with a value of 8.18 ± 0.09 pm V<sup>–1</sup> for compound <b>B</b> with a D−π–A shape and a value of 1.32 ± 0.07 pm V<sup>–1</sup> for compound <b>A</b> with a D−π–D structure. A more detailed analysis of the NLO properties revealed a noteworthy finding: the compounds exhibited considerably elevated third-order nonlinear susceptibility values in comparison to the reference material, with discrepancies spanning 1–2 orders of magnitude. Of particular interest was compound <b>B</b>, which demonstrated the highest <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><msub><mrow><msup><mrow><mi>&#x3C7;</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 3.128em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 2.844em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.139em, 1002.84em, 2.56em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 2.844em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(2.957em, 1001.59em, 4.378em, -999.997em); top: -3.974em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.594em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.355em, 1000.63em, 4.378em, -999.997em); top: -3.974em; left: 0em;\\\"><span><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝜒<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -4.315em; left: 0.685em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">(</span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">3</span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">)</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -3.747em; left: 1.594em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">elec</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.316em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msub><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msup></mrow><mrow><mi>elec</mi></mrow></msub></math></script> value equal (225.91 ± 0.92) × 10<sup>–22</sup> m<sup>2</sup> V<sup>–2</sup>. The research was completed by theoretical quantum chemical calculations, which included the determination of dipole moments and the evaluation of molecular orbital frontier highest occupied molecular orbital and lowest unoccupied molecular orbital energies. These comprehensive studies demonstrate the significant potential of azo-based phenylthiophene derivatives in optoelectronics and quantum optics applications and also show that it is a valuable candidate for the production of organic light-emitting diodes.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c05126\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05126","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了两种供体-受体有机材料的线性和非线性光学(NLO)特性,即 N,N-二甲基-4-((E)-(4-((E)-((5-苯基噻吩-2-基)亚甲基)氨基)苯基)偶氮苯胺 A 和 (E)-4-((E)-(4-硝基苯基)偶氮苯胺)-N-((5-苯基噻吩-2-基)亚甲基)苯胺 B。所研究的化合物因偶氮苯分子上取代基(供体或受体)的性质而彼此不同,因此 A 和 B 分别产生了 D-π-D 和 D-π-A 系统。薄膜沉积过程采用了两种不同的技术:物理气相沉积(PVD)和旋涂。这项工作的目的是阐明化合物的分子结构和薄膜沉积技术对其线性和非线性光学响应的影响。吸收率、光致发光和衰减时间被用来测量线性光学特性,而二次和三次谐波发生技术则被用作非线性光学响应的工具。对 A 和 B 所获结果的比较表明,化合物 B 的非线性光学性能要好得多,D-π-A 结构的化合物 B 的值为 8.18 ± 0.09 pm V-1,而 D-π-D 结构的化合物 A 的值为 1.32 ± 0.07 pm V-1。对 NLO 特性进行更详细的分析后发现了一个值得注意的发现:与参考材料相比,这些化合物的三阶非线性电感值明显升高,差异达到 1-2 个数量级。其中,化合物 B 的𝜒(3)elecχ(3)elec 值最高,等于 (225.91 ± 0.92) × 10-22 m2 V-2。这项研究是通过量子化学理论计算完成的,其中包括偶极矩的测定和分子轨道前沿最高占有分子轨道和最低未占有分子轨道能量的评估。这些综合研究证明了偶氮基苯基噻吩衍生物在光电子学和量子光学应用方面的巨大潜力,同时也表明它是生产有机发光二极管的重要候选材料。
High-Order Harmonics and Photoluminescence in Azo-Phenylthiophene Derivatives
This paper presents the linear and nonlinear optical (NLO) properties of two donor–acceptor organic materials, namely, N,N-dimethyl-4-((E)-(4-((E)-((5-phenylthiophen-2-yl)methylene)amino)phenyl)diazenyl)aniline A and (E)-4-((E)-(4-nitrophenyl)diazenyl)-N-((5-phenylthiophen-2-yl)methylene)aniline B. The studied compounds differ from each other by the nature of the substituent (donor or acceptor) on the azobenzene moiety, giving rise to D−π–D and D−π–A systems, respectively, for A and B. The thin-film deposition process was carried out using two different techniques: physical vapor deposition (PVD) and spin-coating. The aim of this work is to elucidate the influence of both the molecular structure of the compounds and thin-film deposition technique on their linear and nonlinear optical responses. Absorbance, photoluminescence, and decay time were used to measure the linear optical properties, while second and third harmonic generation techniques were used as tools for the nonlinear optical responses. The comparison of the results obtained for both A and B indicates a much better NLO performance with a value of 8.18 ± 0.09 pm V–1 for compound B with a D−π–A shape and a value of 1.32 ± 0.07 pm V–1 for compound A with a D−π–D structure. A more detailed analysis of the NLO properties revealed a noteworthy finding: the compounds exhibited considerably elevated third-order nonlinear susceptibility values in comparison to the reference material, with discrepancies spanning 1–2 orders of magnitude. Of particular interest was compound B, which demonstrated the highest 𝜒(3)elec value equal (225.91 ± 0.92) × 10–22 m2 V–2. The research was completed by theoretical quantum chemical calculations, which included the determination of dipole moments and the evaluation of molecular orbital frontier highest occupied molecular orbital and lowest unoccupied molecular orbital energies. These comprehensive studies demonstrate the significant potential of azo-based phenylthiophene derivatives in optoelectronics and quantum optics applications and also show that it is a valuable candidate for the production of organic light-emitting diodes.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.