改进对减圆 Salsa20 的密钥恢复攻击

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-11-09 DOI:10.1007/s10623-024-01522-7
Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma
{"title":"改进对减圆 Salsa20 的密钥恢复攻击","authors":"Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma","doi":"10.1007/s10623-024-01522-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved key recovery attacks on reduced-round Salsa20\",\"authors\":\"Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma\",\"doi\":\"10.1007/s10623-024-01522-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01522-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01522-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了对流密码 Salsa20 的改进攻击。我们的改进基于两个技术贡献。首先,我们利用了由不同差分导出的多个随机变量的线性组合分布,并解释了如何利用这一点来提高攻击的复杂性。其次,我们研究并利用了如何优化选择所谓概率中性比特的实际值。由于这些关键比特对计算的影响有限,在通常的攻击方法中,这些比特被固定为一个恒定值,为简单起见通常为零。正如我们将展示的那样,尽管它们的影响有限,但常数的选择方式却可以大大改善,而有趣的是,零是最差的选择。利用这一点,我们首次提出了对 128 位密钥版本 Salsa20 的 7.5 轮攻击。此外,我们还改进了对 8 轮 256 位密钥版 Salsa20 和 7 轮 128 位密钥版 Salsa20 的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved key recovery attacks on reduced-round Salsa20

In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1