多孔 V2CTx MXene 作为高稳定性锌阳极保护涂层

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-07 DOI:10.1021/acs.nanolett.4c02347
Guanyu Ma, Kerun Chen, He Qiao, Jiaxin Liu, Honglei Dong, Yu Gao
{"title":"多孔 V2CTx MXene 作为高稳定性锌阳极保护涂层","authors":"Guanyu Ma, Kerun Chen, He Qiao, Jiaxin Liu, Honglei Dong, Yu Gao","doi":"10.1021/acs.nanolett.4c02347","DOIUrl":null,"url":null,"abstract":"Aqueous Zn batteries exhibit significant research potential owing to their environmental friendliness and high energy density. Nevertheless, the formation of dendrites on the zinc anode and the sluggish diffusion kinetics of zinc ions adversely affect the cycle life of zinc ion batteries. In this study, we employ porous V<sub>2</sub>CT<sub><i>x</i></sub> (MVMX) as a protective layer for the zinc anode. The uniform porous structure of MVMX promotes active site exposure and facilitates the transport of zinc ions. Remarkably, the Zn@Ti half-cell demonstrated an average CE of 99.7% in 1500 cycles. Furthermore, the Zn–Zn symmetric battery exhibited stable cycling for 1600 h at current densities of 5 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup>. Additionally, the MVMX@Zn||V<sub>2</sub>O<sub>5</sub> full cell exhibited a capacity of 198 mAh g<sup>–1</sup> and retained a capacity of 124.75 mAh g<sup>–1</sup> after 5000 cycles at 1 A g<sup>–1</sup>, demonstrating the potential of employing alternative MXenes for fabricating stable zinc anodes.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous V2CTx MXene as a High Stability Zinc Anode Protective Coating\",\"authors\":\"Guanyu Ma, Kerun Chen, He Qiao, Jiaxin Liu, Honglei Dong, Yu Gao\",\"doi\":\"10.1021/acs.nanolett.4c02347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous Zn batteries exhibit significant research potential owing to their environmental friendliness and high energy density. Nevertheless, the formation of dendrites on the zinc anode and the sluggish diffusion kinetics of zinc ions adversely affect the cycle life of zinc ion batteries. In this study, we employ porous V<sub>2</sub>CT<sub><i>x</i></sub> (MVMX) as a protective layer for the zinc anode. The uniform porous structure of MVMX promotes active site exposure and facilitates the transport of zinc ions. Remarkably, the Zn@Ti half-cell demonstrated an average CE of 99.7% in 1500 cycles. Furthermore, the Zn–Zn symmetric battery exhibited stable cycling for 1600 h at current densities of 5 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup>. Additionally, the MVMX@Zn||V<sub>2</sub>O<sub>5</sub> full cell exhibited a capacity of 198 mAh g<sup>–1</sup> and retained a capacity of 124.75 mAh g<sup>–1</sup> after 5000 cycles at 1 A g<sup>–1</sup>, demonstrating the potential of employing alternative MXenes for fabricating stable zinc anodes.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02347\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02347","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌水电池因其环保和高能量密度而具有巨大的研究潜力。然而,锌阳极上树枝状突起的形成和锌离子缓慢的扩散动力学会对锌离子电池的循环寿命产生不利影响。在这项研究中,我们采用多孔 V2CTx(MVMX)作为锌阳极的保护层。MVMX 的均匀多孔结构促进了活性位点的暴露,有利于锌离子的传输。值得注意的是,Zn@Ti 半电池在 1500 个循环中的平均 CE 值达到 99.7%。此外,锌-锌对称电池在 5 mA cm-2 和 1 mAh cm-2 的电流密度下稳定循环 1600 小时。此外,MVMX@Zn||V2O5 全电池的容量为 198 mAh g-1,在 1 A g-1 的条件下循环 5000 次后,容量仍保持在 124.75 mAh g-1,这证明了采用替代性 MXenes 制造稳定锌阳极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Porous V2CTx MXene as a High Stability Zinc Anode Protective Coating
Aqueous Zn batteries exhibit significant research potential owing to their environmental friendliness and high energy density. Nevertheless, the formation of dendrites on the zinc anode and the sluggish diffusion kinetics of zinc ions adversely affect the cycle life of zinc ion batteries. In this study, we employ porous V2CTx (MVMX) as a protective layer for the zinc anode. The uniform porous structure of MVMX promotes active site exposure and facilitates the transport of zinc ions. Remarkably, the Zn@Ti half-cell demonstrated an average CE of 99.7% in 1500 cycles. Furthermore, the Zn–Zn symmetric battery exhibited stable cycling for 1600 h at current densities of 5 mA cm–2 and 1 mAh cm–2. Additionally, the MVMX@Zn||V2O5 full cell exhibited a capacity of 198 mAh g–1 and retained a capacity of 124.75 mAh g–1 after 5000 cycles at 1 A g–1, demonstrating the potential of employing alternative MXenes for fabricating stable zinc anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1