Qi Guo, Qi Tan, Yue Peng, Long Xiao, Miao Liu, Benyun Shi
{"title":"用于交通密度预测的模型增强型时空注意力网络","authors":"Qi Guo, Qi Tan, Yue Peng, Long Xiao, Miao Liu, Benyun Shi","doi":"10.1007/s40747-024-01669-9","DOIUrl":null,"url":null,"abstract":"<p>Traffic density is a crucial indicator for evaluating the level of service, as it directly reflects the degree of road congestion and driving comfort. However, accurately predicting real-time traffic density has been a significant challenge in Intelligent Transportation Systems (ITS) due to the nonlinear and spatial-temporal dynamic complexity of traffic density. In this paper, we propose a novel Model-enhanced Spatial-Temporal Attention Network (MSTAN), which constructs a spatial-temporal traffic kernel density model using the Kernel Density Estimation (KDE) method to process the spatiotemporal data and calculate the probabilities of various spatiotemporal events. These probabilities are input into the attention mechanism, enabling the model to recognize the inherent connection between dynamic and distant events. Through this fusion, the network can deeply learn and analyze the spatial-temporal properties of traffic features. Furthermore, this paper utilizes the attention mechanism to dynamically model spatial-temporal dependencies, capturing real-time traffic conditions and density, and constructs a spatial-temporal attention module for learning. To validate the performance of the proposed MSTAN model, experiments are conducted on two public datasets of California highways (PeMS04 and PeMS08). The experimental results demonstrate that the MSTAN model outperforms existing state-of-the-art baseline models in terms of prediction accuracy, thus proving the effectiveness of the model both theoretically and practically.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-enhanced spatial-temporal attention networks for traffic density prediction\",\"authors\":\"Qi Guo, Qi Tan, Yue Peng, Long Xiao, Miao Liu, Benyun Shi\",\"doi\":\"10.1007/s40747-024-01669-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traffic density is a crucial indicator for evaluating the level of service, as it directly reflects the degree of road congestion and driving comfort. However, accurately predicting real-time traffic density has been a significant challenge in Intelligent Transportation Systems (ITS) due to the nonlinear and spatial-temporal dynamic complexity of traffic density. In this paper, we propose a novel Model-enhanced Spatial-Temporal Attention Network (MSTAN), which constructs a spatial-temporal traffic kernel density model using the Kernel Density Estimation (KDE) method to process the spatiotemporal data and calculate the probabilities of various spatiotemporal events. These probabilities are input into the attention mechanism, enabling the model to recognize the inherent connection between dynamic and distant events. Through this fusion, the network can deeply learn and analyze the spatial-temporal properties of traffic features. Furthermore, this paper utilizes the attention mechanism to dynamically model spatial-temporal dependencies, capturing real-time traffic conditions and density, and constructs a spatial-temporal attention module for learning. To validate the performance of the proposed MSTAN model, experiments are conducted on two public datasets of California highways (PeMS04 and PeMS08). The experimental results demonstrate that the MSTAN model outperforms existing state-of-the-art baseline models in terms of prediction accuracy, thus proving the effectiveness of the model both theoretically and practically.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01669-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01669-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Model-enhanced spatial-temporal attention networks for traffic density prediction
Traffic density is a crucial indicator for evaluating the level of service, as it directly reflects the degree of road congestion and driving comfort. However, accurately predicting real-time traffic density has been a significant challenge in Intelligent Transportation Systems (ITS) due to the nonlinear and spatial-temporal dynamic complexity of traffic density. In this paper, we propose a novel Model-enhanced Spatial-Temporal Attention Network (MSTAN), which constructs a spatial-temporal traffic kernel density model using the Kernel Density Estimation (KDE) method to process the spatiotemporal data and calculate the probabilities of various spatiotemporal events. These probabilities are input into the attention mechanism, enabling the model to recognize the inherent connection between dynamic and distant events. Through this fusion, the network can deeply learn and analyze the spatial-temporal properties of traffic features. Furthermore, this paper utilizes the attention mechanism to dynamically model spatial-temporal dependencies, capturing real-time traffic conditions and density, and constructs a spatial-temporal attention module for learning. To validate the performance of the proposed MSTAN model, experiments are conducted on two public datasets of California highways (PeMS04 and PeMS08). The experimental results demonstrate that the MSTAN model outperforms existing state-of-the-art baseline models in terms of prediction accuracy, thus proving the effectiveness of the model both theoretically and practically.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.