Xiaoyu Xia;Feifei Chen;Qiang He;Ruikun Luo;Bowen Liu;Caslon Chua;Rajkumar Buyya;Yun Yang
{"title":"EdgeShield:在边缘实现协作式 DDoS 缓解","authors":"Xiaoyu Xia;Feifei Chen;Qiang He;Ruikun Luo;Bowen Liu;Caslon Chua;Rajkumar Buyya;Yun Yang","doi":"10.1109/TMC.2024.3443260","DOIUrl":null,"url":null,"abstract":"Edge computing (EC) enables low-latency services by pushing computing resources to the network edge. Due to the geographic distribution and limited capacities of edge servers, EC systems face the challenge of edge distributed denial-of-service (DDoS) attacks. Existing systems designed to fight cloud DDoS attacks cannot mitigate edge DDoS attacks effectively due to new attack characteristics. In addition, those systems are typically activated upon detected attacks, which is not always realistic in EC systems. DDoS mitigation needs to be cohesively integrated with workload migration at the edge to ensure timely responses to edge DDoS attacks. In this paper, we present EdgeShield, a novel DDoS mitigation system that leverages edge servers’ computing resources collectively to defend against edge DDoS attacks without the need for attack detection. Aiming to maximize system throughput over time without causing significant service delays, EdgeShield monitors service delays and migrates workloads across an EC system with adaptive mitigation strategies. The experimental results show that EdgeShield significantly outperforms state-of-the-art solutions in both system throughput and service delays.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14502-14513"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EdgeShield: Enabling Collaborative DDoS Mitigation at the Edge\",\"authors\":\"Xiaoyu Xia;Feifei Chen;Qiang He;Ruikun Luo;Bowen Liu;Caslon Chua;Rajkumar Buyya;Yun Yang\",\"doi\":\"10.1109/TMC.2024.3443260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing (EC) enables low-latency services by pushing computing resources to the network edge. Due to the geographic distribution and limited capacities of edge servers, EC systems face the challenge of edge distributed denial-of-service (DDoS) attacks. Existing systems designed to fight cloud DDoS attacks cannot mitigate edge DDoS attacks effectively due to new attack characteristics. In addition, those systems are typically activated upon detected attacks, which is not always realistic in EC systems. DDoS mitigation needs to be cohesively integrated with workload migration at the edge to ensure timely responses to edge DDoS attacks. In this paper, we present EdgeShield, a novel DDoS mitigation system that leverages edge servers’ computing resources collectively to defend against edge DDoS attacks without the need for attack detection. Aiming to maximize system throughput over time without causing significant service delays, EdgeShield monitors service delays and migrates workloads across an EC system with adaptive mitigation strategies. The experimental results show that EdgeShield significantly outperforms state-of-the-art solutions in both system throughput and service delays.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"23 12\",\"pages\":\"14502-14513\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636795/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636795/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
EdgeShield: Enabling Collaborative DDoS Mitigation at the Edge
Edge computing (EC) enables low-latency services by pushing computing resources to the network edge. Due to the geographic distribution and limited capacities of edge servers, EC systems face the challenge of edge distributed denial-of-service (DDoS) attacks. Existing systems designed to fight cloud DDoS attacks cannot mitigate edge DDoS attacks effectively due to new attack characteristics. In addition, those systems are typically activated upon detected attacks, which is not always realistic in EC systems. DDoS mitigation needs to be cohesively integrated with workload migration at the edge to ensure timely responses to edge DDoS attacks. In this paper, we present EdgeShield, a novel DDoS mitigation system that leverages edge servers’ computing resources collectively to defend against edge DDoS attacks without the need for attack detection. Aiming to maximize system throughput over time without causing significant service delays, EdgeShield monitors service delays and migrates workloads across an EC system with adaptive mitigation strategies. The experimental results show that EdgeShield significantly outperforms state-of-the-art solutions in both system throughput and service delays.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.