动态用户多无人机 MEC 系统中安全通信的任务卸载和轨迹优化

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-08-14 DOI:10.1109/TMC.2024.3442909
Yuhao Zhang;Zhufang Kuang;Yanyan Feng;Fen Hou
{"title":"动态用户多无人机 MEC 系统中安全通信的任务卸载和轨迹优化","authors":"Yuhao Zhang;Zhufang Kuang;Yanyan Feng;Fen Hou","doi":"10.1109/TMC.2024.3442909","DOIUrl":null,"url":null,"abstract":"With the advantages of high mobility and flexible deployment, Unmanned Aerial Vehicle (UAV) combines with Mobile Edge Computing (MEC) is a promising technology. When dynamic Terminal Users (TUs) offload tasks to UAVs, eavesdroppers may eavesdrop on the channel information. The offloading decisions, trajectory plannings of UAVs and resource allocation with the objective of high-capacity secure communication is a challenging problem. In this paper, we design a multi-UAVs MEC system, where the original region is divided into several sub-regions and TUs offload tasks to UAVs which provide computing services for these TUs. Meanwhile, A joint optimization problem of offloading decision, resource allocation and trajectory planning is formulated, where TUs move with the Gauss-Markov random model. In addition, the Base Station (BS) emits jamming signals to evade the eavesdropping of offloading information from eavesdroppers. The goal of the optimization problem is to maximize the TUs’ minimum secure calculation capacity, and a Joint Dynamic Programming and Bidding (JDPB) algorithm is proposed to solve it. The Successive Convex Approximation (SCA) and Block Coordinate Descent (BCD) algorithms are used to handle the resource allocation and trajectory planning problems, and the bidding method is used to address the task offloading decision problem. Simulation results show that JDPB has better performance and better robustness under different parameter settings than other schemes.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14427-14440"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task Offloading and Trajectory Optimization for Secure Communications in Dynamic User Multi-UAV MEC Systems\",\"authors\":\"Yuhao Zhang;Zhufang Kuang;Yanyan Feng;Fen Hou\",\"doi\":\"10.1109/TMC.2024.3442909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advantages of high mobility and flexible deployment, Unmanned Aerial Vehicle (UAV) combines with Mobile Edge Computing (MEC) is a promising technology. When dynamic Terminal Users (TUs) offload tasks to UAVs, eavesdroppers may eavesdrop on the channel information. The offloading decisions, trajectory plannings of UAVs and resource allocation with the objective of high-capacity secure communication is a challenging problem. In this paper, we design a multi-UAVs MEC system, where the original region is divided into several sub-regions and TUs offload tasks to UAVs which provide computing services for these TUs. Meanwhile, A joint optimization problem of offloading decision, resource allocation and trajectory planning is formulated, where TUs move with the Gauss-Markov random model. In addition, the Base Station (BS) emits jamming signals to evade the eavesdropping of offloading information from eavesdroppers. The goal of the optimization problem is to maximize the TUs’ minimum secure calculation capacity, and a Joint Dynamic Programming and Bidding (JDPB) algorithm is proposed to solve it. The Successive Convex Approximation (SCA) and Block Coordinate Descent (BCD) algorithms are used to handle the resource allocation and trajectory planning problems, and the bidding method is used to address the task offloading decision problem. Simulation results show that JDPB has better performance and better robustness under different parameter settings than other schemes.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"23 12\",\"pages\":\"14427-14440\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636964/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636964/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(UAV)具有高机动性和灵活部署的优势,与移动边缘计算(MEC)相结合是一项前景广阔的技术。当动态终端用户(TU)将任务卸载给无人飞行器时,窃听者可能会窃听信道信息。以大容量安全通信为目标的无人机卸载决策、轨迹规划和资源分配是一个具有挑战性的问题。本文设计了一个多无人机 MEC 系统,在该系统中,原始区域被划分为多个子区域,TU 将任务卸载给无人机,无人机为这些 TU 提供计算服务。同时,在 TU 以高斯-马尔科夫随机模型移动的情况下,提出了卸载决策、资源分配和轨迹规划的联合优化问题。此外,基站(BS)会发射干扰信号,以躲避窃听者对卸载信息的窃听。优化问题的目标是最大化 TU 的最小安全计算能力,并提出了一种联合动态编程和出价(JDPB)算法来解决该问题。接续近似(SCA)和块坐标下降(BCD)算法用于处理资源分配和轨迹规划问题,竞价方法用于解决任务卸载决策问题。仿真结果表明,与其他方案相比,JDPB 在不同参数设置下具有更好的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Offloading and Trajectory Optimization for Secure Communications in Dynamic User Multi-UAV MEC Systems
With the advantages of high mobility and flexible deployment, Unmanned Aerial Vehicle (UAV) combines with Mobile Edge Computing (MEC) is a promising technology. When dynamic Terminal Users (TUs) offload tasks to UAVs, eavesdroppers may eavesdrop on the channel information. The offloading decisions, trajectory plannings of UAVs and resource allocation with the objective of high-capacity secure communication is a challenging problem. In this paper, we design a multi-UAVs MEC system, where the original region is divided into several sub-regions and TUs offload tasks to UAVs which provide computing services for these TUs. Meanwhile, A joint optimization problem of offloading decision, resource allocation and trajectory planning is formulated, where TUs move with the Gauss-Markov random model. In addition, the Base Station (BS) emits jamming signals to evade the eavesdropping of offloading information from eavesdroppers. The goal of the optimization problem is to maximize the TUs’ minimum secure calculation capacity, and a Joint Dynamic Programming and Bidding (JDPB) algorithm is proposed to solve it. The Successive Convex Approximation (SCA) and Block Coordinate Descent (BCD) algorithms are used to handle the resource allocation and trajectory planning problems, and the bidding method is used to address the task offloading decision problem. Simulation results show that JDPB has better performance and better robustness under different parameter settings than other schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Charger Placement with Wave Interference t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving Exploitation and Confrontation: Sustainability Analysis of Crowdsourcing Bison : A Binary Sparse Network Coding based Contents Sharing Scheme for D2D-Enabled Mobile Edge Caching Network Argus: Enabling Cross-Camera Collaboration for Video Analytics on Distributed Smart Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1