高效的平面织物重新定位:用于非拉伸织物操纵的变形感知 RRT* 技术

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-21 DOI:10.1109/LRA.2024.3484131
Yunhai Wang;Lei Yang;Peng Zhou;Jiaming Qi;Liang Lu;Jihong Zhu;Jia Pan
{"title":"高效的平面织物重新定位:用于非拉伸织物操纵的变形感知 RRT* 技术","authors":"Yunhai Wang;Lei Yang;Peng Zhou;Jiaming Qi;Liang Lu;Jihong Zhu;Jia Pan","doi":"10.1109/LRA.2024.3484131","DOIUrl":null,"url":null,"abstract":"Fabrics present significant challenges to robotic manipulation due to their complex dynamics and infinite degrees of freedom. This letter proposes a non-prehensile approach to aligning a fabric cut piece to a specified target pose, which is a common step for many garment manufacturing tasks. Compared to widely explored prehensile manipulation that grasps and lifts the fabric, the proposed approach uses pushing actions and allows for efficient fabric repositioning with a simpler end-effector. To handle the possible deformation caused by the pushing actions, we introduce the Deformation-aware Rapidly-exploring Random Tree Star (D-RRT*) algorithm that strategically plans the contact poses and actions to slide the fabric to desired configurations by leveraging the friction. Our D-RRT* algorithm enhances fabric manipulation by incorporating deformation-aware action sampling into the path planning process, enabling accurate predictions of non-prehensile actions and efficient navigation through the fabric's configuration space. Extensive simulations and real-world experiments on repositioning fabrics of various shapes and materials demonstrate the effectiveness of the proposed pipeline in achieving stable and efficient manipulation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11258-11265"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723787","citationCount":"0","resultStr":"{\"title\":\"Efficient Planar Fabric Repositioning: Deformation-Aware RRT* for Non-Prehensile Fabric Manipulation\",\"authors\":\"Yunhai Wang;Lei Yang;Peng Zhou;Jiaming Qi;Liang Lu;Jihong Zhu;Jia Pan\",\"doi\":\"10.1109/LRA.2024.3484131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fabrics present significant challenges to robotic manipulation due to their complex dynamics and infinite degrees of freedom. This letter proposes a non-prehensile approach to aligning a fabric cut piece to a specified target pose, which is a common step for many garment manufacturing tasks. Compared to widely explored prehensile manipulation that grasps and lifts the fabric, the proposed approach uses pushing actions and allows for efficient fabric repositioning with a simpler end-effector. To handle the possible deformation caused by the pushing actions, we introduce the Deformation-aware Rapidly-exploring Random Tree Star (D-RRT*) algorithm that strategically plans the contact poses and actions to slide the fabric to desired configurations by leveraging the friction. Our D-RRT* algorithm enhances fabric manipulation by incorporating deformation-aware action sampling into the path planning process, enabling accurate predictions of non-prehensile actions and efficient navigation through the fabric's configuration space. Extensive simulations and real-world experiments on repositioning fabrics of various shapes and materials demonstrate the effectiveness of the proposed pipeline in achieving stable and efficient manipulation.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11258-11265\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723787\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723787/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723787/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

织物因其复杂的动力学特性和无限的自由度,给机器人操纵带来了巨大挑战。这封信提出了一种非拉伸方法,用于将布料裁片对准指定的目标姿势,这是许多服装制造任务的常见步骤。与广泛探索的抓取和抬起布料的前伸式操作相比,所提出的方法使用了推动动作,并允许使用更简单的末端执行器高效地重新定位布料。为了处理推动动作可能造成的变形,我们引入了变形感知快速探索随机树星(D-RRT*)算法,该算法可战略性地规划接触姿势和动作,利用摩擦力将织物滑动到所需的配置。我们的 D-RRT* 算法将变形感知动作采样纳入路径规划过程,从而提高了织物操纵能力,实现了对非拉伸动作的准确预测和织物配置空间的高效导航。在对各种形状和材料的织物进行重新定位时进行的大量模拟和实际实验证明了所提出的管道在实现稳定高效操纵方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Planar Fabric Repositioning: Deformation-Aware RRT* for Non-Prehensile Fabric Manipulation
Fabrics present significant challenges to robotic manipulation due to their complex dynamics and infinite degrees of freedom. This letter proposes a non-prehensile approach to aligning a fabric cut piece to a specified target pose, which is a common step for many garment manufacturing tasks. Compared to widely explored prehensile manipulation that grasps and lifts the fabric, the proposed approach uses pushing actions and allows for efficient fabric repositioning with a simpler end-effector. To handle the possible deformation caused by the pushing actions, we introduce the Deformation-aware Rapidly-exploring Random Tree Star (D-RRT*) algorithm that strategically plans the contact poses and actions to slide the fabric to desired configurations by leveraging the friction. Our D-RRT* algorithm enhances fabric manipulation by incorporating deformation-aware action sampling into the path planning process, enabling accurate predictions of non-prehensile actions and efficient navigation through the fabric's configuration space. Extensive simulations and real-world experiments on repositioning fabrics of various shapes and materials demonstrate the effectiveness of the proposed pipeline in achieving stable and efficient manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1