生物质准固态锂-O2 电池的高效电催化剂:含有镍-钴-N/C 活性物种的多孔纳米笼

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-10-07 DOI:10.1039/D4CE00756E
Tie Liu and Guangwei Zhang
{"title":"生物质准固态锂-O2 电池的高效电催化剂:含有镍-钴-N/C 活性物种的多孔纳米笼","authors":"Tie Liu and Guangwei Zhang","doi":"10.1039/D4CE00756E","DOIUrl":null,"url":null,"abstract":"<p >Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g<small><sup>−1</sup></small>), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O<small><sub>2</sub></small>/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O<small><sub>2</sub></small> batteries.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6288-6295"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species†\",\"authors\":\"Tie Liu and Guangwei Zhang\",\"doi\":\"10.1039/D4CE00756E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g<small><sup>−1</sup></small>), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O<small><sub>2</sub></small>/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O<small><sub>2</sub></small> batteries.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 44\",\"pages\":\" 6288-6295\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00756e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00756e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有序的多孔材料可以提供更多的催化位点和更大的放电产物缓冲空间,从而提高电池性能。本文提出了一种简单的下顶溶液沉淀法,然后通过热解将活性镍-钴-NC 位点分散在 ZIF 衍生的多孔碳纳米笼中。研究发现,这些金属纳米粒子被限制在富含 N 的碳纳米笼中,总金属负载量约为 8.74%。正如预期的那样,这种多孔结构不仅增强了电子传导性,还提供了足够的表面积来促进三相电池反应,并为放电产物的储存创造了更大的空间。实验结果证实,与准固态电池对照组相比,这种有趣的纳米结构可提高电池容量(6682.6 mA h g-1)、库仑效率(∼100%)和循环性能(∼80 次循环)。由于添加了镍来改变多孔结构,丰富了氧气/离子扩散途径和可访问的活性位点,从而加快了氧化还原动力学,降低了过电位(高可逆性)。因此,我们的工作表明,这种多孔双金属纳米笼有望用于制造高效的生物质准固态锂-O2 电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species†

Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Synthesis of 3D composite materials based on ultrathin LDH nanowalls grown in situ on graphene surface and fast-response NO2 gas sensing performance at room temperature† Variations in crystals of flufenamic acid of its methyl and tert-butyl analogues as impurities as determined by partial dissolutions†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1