{"title":"在还原氢气氛中原子层沉积合成氧化钒薄膜","authors":"B. V. Voloshin, V. A. Seleznev, V. A. Golyashov","doi":"10.1134/S0022476624100160","DOIUrl":null,"url":null,"abstract":"<p>The work considers the synthesis of thin films of vanadium oxides by plasma-enhanced atomic layer deposition (PE-ALD). A procedure is proposed to obtain thin films of amorphous vanadium dioxide. The hydrogen effect on the composition of deposited films during PE-ALD is analyzed. Hydrogen is shown to decrease the vanadium oxidation state in the deposited films and amorphize the structure. The mechanism of amorphization is discussed. The application of plasma enhancement promotes the hydrogen reducing activity. Calcination of films consisting of a mixture of vanadium oxides in hydrogen plasma enables the preparation of films of solely amorphous vanadium dioxide.</p>","PeriodicalId":668,"journal":{"name":"Journal of Structural Chemistry","volume":"65 10","pages":"2073 - 2087"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Layer Deposition Synthesis of thin Films of Vanadium Oxides in a Reducing Hydrogen Atmosphere\",\"authors\":\"B. V. Voloshin, V. A. Seleznev, V. A. Golyashov\",\"doi\":\"10.1134/S0022476624100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The work considers the synthesis of thin films of vanadium oxides by plasma-enhanced atomic layer deposition (PE-ALD). A procedure is proposed to obtain thin films of amorphous vanadium dioxide. The hydrogen effect on the composition of deposited films during PE-ALD is analyzed. Hydrogen is shown to decrease the vanadium oxidation state in the deposited films and amorphize the structure. The mechanism of amorphization is discussed. The application of plasma enhancement promotes the hydrogen reducing activity. Calcination of films consisting of a mixture of vanadium oxides in hydrogen plasma enables the preparation of films of solely amorphous vanadium dioxide.</p>\",\"PeriodicalId\":668,\"journal\":{\"name\":\"Journal of Structural Chemistry\",\"volume\":\"65 10\",\"pages\":\"2073 - 2087\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0022476624100160\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624100160","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Atomic Layer Deposition Synthesis of thin Films of Vanadium Oxides in a Reducing Hydrogen Atmosphere
The work considers the synthesis of thin films of vanadium oxides by plasma-enhanced atomic layer deposition (PE-ALD). A procedure is proposed to obtain thin films of amorphous vanadium dioxide. The hydrogen effect on the composition of deposited films during PE-ALD is analyzed. Hydrogen is shown to decrease the vanadium oxidation state in the deposited films and amorphize the structure. The mechanism of amorphization is discussed. The application of plasma enhancement promotes the hydrogen reducing activity. Calcination of films consisting of a mixture of vanadium oxides in hydrogen plasma enables the preparation of films of solely amorphous vanadium dioxide.
期刊介绍:
Journal is an interdisciplinary publication covering all aspects of structural chemistry, including the theory of molecular structure and chemical bond; the use of physical methods to study the electronic and spatial structure of chemical species; structural features of liquids, solutions, surfaces, supramolecular systems, nano- and solid materials; and the crystal structure of solids.