由结晶良好的致密 CsPbBr3 纳米立方体实现的超亮高效绿色 Perovskite 发光二极管

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-11 DOI:10.1021/acs.nanolett.4c04121
Bai-Sheng Zhu, Zhen-Yu Ma, Yong-Hui Song, Jing-Ming Hao, Kuang-Hui Song, Guan-Jie Ding, Ya-Lan Hu, Ya-Ping Xie, Yi-Chen Yin, Hong-Bin Yao
{"title":"由结晶良好的致密 CsPbBr3 纳米立方体实现的超亮高效绿色 Perovskite 发光二极管","authors":"Bai-Sheng Zhu, Zhen-Yu Ma, Yong-Hui Song, Jing-Ming Hao, Kuang-Hui Song, Guan-Jie Ding, Ya-Lan Hu, Ya-Ping Xie, Yi-Chen Yin, Hong-Bin Yao","doi":"10.1021/acs.nanolett.4c04121","DOIUrl":null,"url":null,"abstract":"Perovskite light-emitting diodes (PeLEDs) are promising for next-generation high-definition displays. One of the keys to achieving high performance PeLEDs lies in how to fabricate crystalline and dense perovskite films. However, there exist challenges to directly grow well-crystallized CsPbBr<sub>3</sub> nanocrystal thin films on transport layers due to low solubility in solvents and fast precipitation of all-inorganic CsPbBr<sub>3</sub>, and the corresponding bright, efficient, and stable green PeLEDs have rarely been reported. Herein, we report an efficient strategy to prepare well-crystallized and dense CsPbBr<sub>3</sub> nanocubes for ultrabright and efficient green PeLEDs. We introduce sulfobetaine zwitterion as crystallization control agent and strontium fluoride nanocrystals as nucleation seeds to grow high-quality CsPbBr<sub>3</sub> nanocube films. Eventually, the CsPbBr<sub>3</sub> films enable green PeLEDs with a maximum luminance of 162 767 cd m<sup>–2</sup> and a champion external quantum efficiency of 21.3% along with a narrow spectral line width of ∼14.7 nm, representing state-of-the-art performances in green PeLEDs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrabright and Efficient Green Perovskite Light-Emitting Diodes Enabled by Well-Crystallized Dense CsPbBr3 Nanocubes\",\"authors\":\"Bai-Sheng Zhu, Zhen-Yu Ma, Yong-Hui Song, Jing-Ming Hao, Kuang-Hui Song, Guan-Jie Ding, Ya-Lan Hu, Ya-Ping Xie, Yi-Chen Yin, Hong-Bin Yao\",\"doi\":\"10.1021/acs.nanolett.4c04121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite light-emitting diodes (PeLEDs) are promising for next-generation high-definition displays. One of the keys to achieving high performance PeLEDs lies in how to fabricate crystalline and dense perovskite films. However, there exist challenges to directly grow well-crystallized CsPbBr<sub>3</sub> nanocrystal thin films on transport layers due to low solubility in solvents and fast precipitation of all-inorganic CsPbBr<sub>3</sub>, and the corresponding bright, efficient, and stable green PeLEDs have rarely been reported. Herein, we report an efficient strategy to prepare well-crystallized and dense CsPbBr<sub>3</sub> nanocubes for ultrabright and efficient green PeLEDs. We introduce sulfobetaine zwitterion as crystallization control agent and strontium fluoride nanocrystals as nucleation seeds to grow high-quality CsPbBr<sub>3</sub> nanocube films. Eventually, the CsPbBr<sub>3</sub> films enable green PeLEDs with a maximum luminance of 162 767 cd m<sup>–2</sup> and a champion external quantum efficiency of 21.3% along with a narrow spectral line width of ∼14.7 nm, representing state-of-the-art performances in green PeLEDs.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04121\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04121","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物发光二极管(PeLED)有望用于下一代高清显示器。实现高性能 PeLED 的关键之一在于如何制造结晶致密的包晶体薄膜。然而,由于 CsPbBr3 在溶剂中的低溶解度和全无机物 CsPbBr3 的快速沉淀,在传输层上直接生长结晶良好的 CsPbBr3 纳米晶体薄膜存在挑战,相应的明亮、高效和稳定的绿色 PeLED 也鲜有报道。在此,我们报告了一种制备结晶良好且致密的 CsPbBr3 纳米立方体的高效策略,以实现超亮、高效的绿色 PeLED。我们引入磺基甜菜碱齐聚物作为结晶控制剂,并引入氟化锶纳米晶体作为成核种子,从而生长出高质量的 CsPbBr3 纳米立方体薄膜。最终,CsPbBr3 膜使绿色 PeLED 的最大亮度达到 162767 cd m-2,冠军外量子效率为 21.3%,光谱线宽 ∼14.7 nm,代表了绿色 PeLED 的最新性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrabright and Efficient Green Perovskite Light-Emitting Diodes Enabled by Well-Crystallized Dense CsPbBr3 Nanocubes
Perovskite light-emitting diodes (PeLEDs) are promising for next-generation high-definition displays. One of the keys to achieving high performance PeLEDs lies in how to fabricate crystalline and dense perovskite films. However, there exist challenges to directly grow well-crystallized CsPbBr3 nanocrystal thin films on transport layers due to low solubility in solvents and fast precipitation of all-inorganic CsPbBr3, and the corresponding bright, efficient, and stable green PeLEDs have rarely been reported. Herein, we report an efficient strategy to prepare well-crystallized and dense CsPbBr3 nanocubes for ultrabright and efficient green PeLEDs. We introduce sulfobetaine zwitterion as crystallization control agent and strontium fluoride nanocrystals as nucleation seeds to grow high-quality CsPbBr3 nanocube films. Eventually, the CsPbBr3 films enable green PeLEDs with a maximum luminance of 162 767 cd m–2 and a champion external quantum efficiency of 21.3% along with a narrow spectral line width of ∼14.7 nm, representing state-of-the-art performances in green PeLEDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1