克诺尔吡咯合成的催化版本允许获得吡咯和吡啶

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-11 DOI:10.1021/jacs.4c13266
Max Leinert, Torsten Irrgang, Rhett Kempe
{"title":"克诺尔吡咯合成的催化版本允许获得吡咯和吡啶","authors":"Max Leinert, Torsten Irrgang, Rhett Kempe","doi":"10.1021/jacs.4c13266","DOIUrl":null,"url":null,"abstract":"Aromatic <i>N</i>-heterocycles, such as pyrroles and pyridines, are important natural products and bulk and fine chemicals with numerous applications as active ingredients of pharmaceuticals and agrochemicals, as catalysts, and in materials sciences. We report here a catalytic version of the Knorr pyrrole synthesis in which simple and diversely available starting materials, such as 1,2-amino alcohols or 1,3-amino alcohols and keto esters, undergo a dehydrogenative coupling to form pyrroles and pyridines, respectively. Our reaction forms hydrogen as a collectible (and usable) byproduct and is mediated by a well-defined Mn catalyst. The synthesis of highly functionalized heterocycles and applications was demonstrated, and 35 compounds, not yet reported in the literature, were introduced.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"19 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Catalytic Version of the Knorr Pyrrole Synthesis Permits Access to Pyrroles and Pyridines\",\"authors\":\"Max Leinert, Torsten Irrgang, Rhett Kempe\",\"doi\":\"10.1021/jacs.4c13266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aromatic <i>N</i>-heterocycles, such as pyrroles and pyridines, are important natural products and bulk and fine chemicals with numerous applications as active ingredients of pharmaceuticals and agrochemicals, as catalysts, and in materials sciences. We report here a catalytic version of the Knorr pyrrole synthesis in which simple and diversely available starting materials, such as 1,2-amino alcohols or 1,3-amino alcohols and keto esters, undergo a dehydrogenative coupling to form pyrroles and pyridines, respectively. Our reaction forms hydrogen as a collectible (and usable) byproduct and is mediated by a well-defined Mn catalyst. The synthesis of highly functionalized heterocycles and applications was demonstrated, and 35 compounds, not yet reported in the literature, were introduced.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c13266\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13266","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

芳香族 N-杂环(如吡咯和吡啶)是重要的天然产物、大宗化学品和精细化学品,可作为药物和农用化学品的活性成分、催化剂以及材料科学领域的多种应用。我们在此报告一种催化版的克诺尔吡咯合成法,在该方法中,1,2-氨基醇或 1,3-氨基醇和酮酯等简单而多样的起始原料经过脱氢偶联分别生成吡咯和吡啶。我们的反应形成氢气作为可收集(和可用)的副产物,并由定义明确的锰催化剂介导。我们展示了高官能度杂环的合成及其应用,并介绍了 35 种文献中尚未报道的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Catalytic Version of the Knorr Pyrrole Synthesis Permits Access to Pyrroles and Pyridines
Aromatic N-heterocycles, such as pyrroles and pyridines, are important natural products and bulk and fine chemicals with numerous applications as active ingredients of pharmaceuticals and agrochemicals, as catalysts, and in materials sciences. We report here a catalytic version of the Knorr pyrrole synthesis in which simple and diversely available starting materials, such as 1,2-amino alcohols or 1,3-amino alcohols and keto esters, undergo a dehydrogenative coupling to form pyrroles and pyridines, respectively. Our reaction forms hydrogen as a collectible (and usable) byproduct and is mediated by a well-defined Mn catalyst. The synthesis of highly functionalized heterocycles and applications was demonstrated, and 35 compounds, not yet reported in the literature, were introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Geminal Synergy in Pt–Co Dual-Atom Catalysts: From Synthesis to Photocatalytic Hydrogen Production Performance Descriptor of Subsurface Metal-Promoted Boron Catalysts for Low-Temperature Propane Oxidative Dehydrogenation to Propylene Remote-Contact Catalysis for Target-Diameter Semiconducting Carbon Nanotube Arrays DNA-Regulated Multi-Protein Complement Control Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1