Shanling Ren, Xiaocong Tan, Xin Huang, zhihong yang, Yunhui Wang
{"title":"单轴拉伸应变对作为锂硫电池阴极材料的 1T-NbS2 单层的影响","authors":"Shanling Ren, Xiaocong Tan, Xin Huang, zhihong yang, Yunhui Wang","doi":"10.1039/d4cp03156c","DOIUrl":null,"url":null,"abstract":"In this work, we report our study on asymmetrical Janus TiSSe monolayers as cathode materials for lithium-sulfur batteries by first-principles calculations, encompassing adsorption, catalytic, and conductive properties. The results indicate that all Lithium Polysulfides (LiPSs) are adsorbed onto the S/Se surface of the TiSSe monolayer with a moderate adsorption energy, effectively suppressing the shuttle effect. The bond formation process were investigated by charge transfer, physical/chemical adsorption and projected crystal orbital Hamiltonian population (pCOHP), which confirmed its occurrence in the early lithiation stage. The Gibbs free energies for the reduction reaction of sulfur on the S/Se surface demonstrate a significant enhancement in the transformation kinetics. Additionally, the low decomposition and diffusion energy barriers for lithium atoms on the S/Se surface of TiSSe monolayer indicate its catalytic potential in facilitating sulfur redox transformation. Furthermore, the TiSSe monolayer exhibits metallic properties prior to and after polysulfide absorption, thereby enhancing electron transport capacity in Li-S batteries. The adsorption, diffusion, and reaction kinetics of TiSSe demonstrate superior performance compared to TiS2 and TiSe2. Therefore, the Janus TiSSe monolayer presents a novel perspective for the selection of battery adsorption materials as a high-performance positive cathode material in Lithium-sulfur batteries.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"72 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniaxial Tensile Strain Impact on 1T-NbS2 Monolayers as Cathode Material for Lithium-Sulfur Batteries\",\"authors\":\"Shanling Ren, Xiaocong Tan, Xin Huang, zhihong yang, Yunhui Wang\",\"doi\":\"10.1039/d4cp03156c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we report our study on asymmetrical Janus TiSSe monolayers as cathode materials for lithium-sulfur batteries by first-principles calculations, encompassing adsorption, catalytic, and conductive properties. The results indicate that all Lithium Polysulfides (LiPSs) are adsorbed onto the S/Se surface of the TiSSe monolayer with a moderate adsorption energy, effectively suppressing the shuttle effect. The bond formation process were investigated by charge transfer, physical/chemical adsorption and projected crystal orbital Hamiltonian population (pCOHP), which confirmed its occurrence in the early lithiation stage. The Gibbs free energies for the reduction reaction of sulfur on the S/Se surface demonstrate a significant enhancement in the transformation kinetics. Additionally, the low decomposition and diffusion energy barriers for lithium atoms on the S/Se surface of TiSSe monolayer indicate its catalytic potential in facilitating sulfur redox transformation. Furthermore, the TiSSe monolayer exhibits metallic properties prior to and after polysulfide absorption, thereby enhancing electron transport capacity in Li-S batteries. The adsorption, diffusion, and reaction kinetics of TiSSe demonstrate superior performance compared to TiS2 and TiSe2. Therefore, the Janus TiSSe monolayer presents a novel perspective for the selection of battery adsorption materials as a high-performance positive cathode material in Lithium-sulfur batteries.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp03156c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03156c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Uniaxial Tensile Strain Impact on 1T-NbS2 Monolayers as Cathode Material for Lithium-Sulfur Batteries
In this work, we report our study on asymmetrical Janus TiSSe monolayers as cathode materials for lithium-sulfur batteries by first-principles calculations, encompassing adsorption, catalytic, and conductive properties. The results indicate that all Lithium Polysulfides (LiPSs) are adsorbed onto the S/Se surface of the TiSSe monolayer with a moderate adsorption energy, effectively suppressing the shuttle effect. The bond formation process were investigated by charge transfer, physical/chemical adsorption and projected crystal orbital Hamiltonian population (pCOHP), which confirmed its occurrence in the early lithiation stage. The Gibbs free energies for the reduction reaction of sulfur on the S/Se surface demonstrate a significant enhancement in the transformation kinetics. Additionally, the low decomposition and diffusion energy barriers for lithium atoms on the S/Se surface of TiSSe monolayer indicate its catalytic potential in facilitating sulfur redox transformation. Furthermore, the TiSSe monolayer exhibits metallic properties prior to and after polysulfide absorption, thereby enhancing electron transport capacity in Li-S batteries. The adsorption, diffusion, and reaction kinetics of TiSSe demonstrate superior performance compared to TiS2 and TiSe2. Therefore, the Janus TiSSe monolayer presents a novel perspective for the selection of battery adsorption materials as a high-performance positive cathode material in Lithium-sulfur batteries.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.