用于先进钠离子电池的高熵 NASICON 型阴极的协同效应

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-12 DOI:10.1039/d4ta06950a
Shouyue Wang, Taiding Xu, Huitao Leng, Shengyu Liang, Wei Zhang, Yuheng Jin, Jingxia Qiu, Sheng Li
{"title":"用于先进钠离子电池的高熵 NASICON 型阴极的协同效应","authors":"Shouyue Wang, Taiding Xu, Huitao Leng, Shengyu Liang, Wei Zhang, Yuheng Jin, Jingxia Qiu, Sheng Li","doi":"10.1039/d4ta06950a","DOIUrl":null,"url":null,"abstract":"Na3V2(PO4)3 (NVP) is recognized as one of the most promising NASICON-type cathodes for sodium-ion storage. Enhancing electronic conductivity and further ensuring long-term structural stability when activating the high-voltage V⁴⁺/V⁵⁺ redox reaction is crucial for the practical application of NVP cathodes. In this study, a high-entropy NVP with carbon coating (Na3V1.5(CrMnFeMgAl)0.5(PO4)3@C, HE-NVMP@C) has been designed and synthesized. Due to the enhanced electronic/ionic conductivity facilitated by the carbon coating and lattice distortion from the high-entropy effect, the HE-NVMP@C exhibits improved high-rate performance. Additionally, benefiting from the collaboration between the doped heteroatoms, the HE-NVMP@C can effectively activate V3+/V4+/V5+ redox reactions within the 2.5-4.3 V voltage window while maintaining excellent structural stability over extended cycles. This work provides an efficient approach to enhance the electrochemical performances of NASICON-type cathodes for sodium-ion batteries.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"25 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergetic Effects from a High-Entropy NASICON-type Cathode for Advanced Sodium-Ion Batteries\",\"authors\":\"Shouyue Wang, Taiding Xu, Huitao Leng, Shengyu Liang, Wei Zhang, Yuheng Jin, Jingxia Qiu, Sheng Li\",\"doi\":\"10.1039/d4ta06950a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Na3V2(PO4)3 (NVP) is recognized as one of the most promising NASICON-type cathodes for sodium-ion storage. Enhancing electronic conductivity and further ensuring long-term structural stability when activating the high-voltage V⁴⁺/V⁵⁺ redox reaction is crucial for the practical application of NVP cathodes. In this study, a high-entropy NVP with carbon coating (Na3V1.5(CrMnFeMgAl)0.5(PO4)3@C, HE-NVMP@C) has been designed and synthesized. Due to the enhanced electronic/ionic conductivity facilitated by the carbon coating and lattice distortion from the high-entropy effect, the HE-NVMP@C exhibits improved high-rate performance. Additionally, benefiting from the collaboration between the doped heteroatoms, the HE-NVMP@C can effectively activate V3+/V4+/V5+ redox reactions within the 2.5-4.3 V voltage window while maintaining excellent structural stability over extended cycles. This work provides an efficient approach to enhance the electrochemical performances of NASICON-type cathodes for sodium-ion batteries.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06950a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06950a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Na3V2(PO4)3 (NVP)是公认的最有前途的钠离子存储 NASICON 型阴极之一。在激活高压 V⁴⁺/V⁵⁺氧化还原反应时,提高电子导电性并进一步确保长期结构稳定性对于 NVP 阴极的实际应用至关重要。本研究设计并合成了一种具有碳涂层的高熵 NVP(Na3V1.5(CrMnFeMgAl)0.5(PO4)3@C,HE-NVMP@C)。由于碳涂层和高熵效应产生的晶格畸变增强了电子/离子导电性,HE-NVMP@C 显示出更高的高速率性能。此外,得益于掺杂杂原子之间的协同作用,HE-NVMP@C 能在 2.5-4.3 V 电压窗口内有效激活 V3+/V4+/V5+ 氧化还原反应,同时在长时间的循环中保持优异的结构稳定性。这项研究为提高钠离子电池 NASICON 型阴极的电化学性能提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergetic Effects from a High-Entropy NASICON-type Cathode for Advanced Sodium-Ion Batteries
Na3V2(PO4)3 (NVP) is recognized as one of the most promising NASICON-type cathodes for sodium-ion storage. Enhancing electronic conductivity and further ensuring long-term structural stability when activating the high-voltage V⁴⁺/V⁵⁺ redox reaction is crucial for the practical application of NVP cathodes. In this study, a high-entropy NVP with carbon coating (Na3V1.5(CrMnFeMgAl)0.5(PO4)3@C, HE-NVMP@C) has been designed and synthesized. Due to the enhanced electronic/ionic conductivity facilitated by the carbon coating and lattice distortion from the high-entropy effect, the HE-NVMP@C exhibits improved high-rate performance. Additionally, benefiting from the collaboration between the doped heteroatoms, the HE-NVMP@C can effectively activate V3+/V4+/V5+ redox reactions within the 2.5-4.3 V voltage window while maintaining excellent structural stability over extended cycles. This work provides an efficient approach to enhance the electrochemical performances of NASICON-type cathodes for sodium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Multicolor solid-state fluorescence and multicolor afterglow carbon dots: preparation, luminescence regulation, and applications Correction: Thermodynamic assessment of Gd-doped CeO2 for microwave-assisted thermochemical reduction Mechanical-dielectric optimized graphene aerogels with strain-tunable microwave attenuation and shielding functions A fluorinated zirconium-based metal-organic framework as a platform for the capture and removal of perfluorinated pollutants from air and water The Z-scheme inorganic intergrowth bulk heterojunction to achieve the photostimulated oxygen vacancy regeneration for photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1