利用 MXenes 和 MOFs 推动纸基传感器的发展:探索前沿创新

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-12 DOI:10.1039/d4ta06561a
Sepehr Larijani, Atefeh Zarepour, Arezoo Khosravi, Siavash Iravani, Mahnaz Eskandari, Ali Zarrabi
{"title":"利用 MXenes 和 MOFs 推动纸基传感器的发展:探索前沿创新","authors":"Sepehr Larijani, Atefeh Zarepour, Arezoo Khosravi, Siavash Iravani, Mahnaz Eskandari, Ali Zarrabi","doi":"10.1039/d4ta06561a","DOIUrl":null,"url":null,"abstract":"MXenes and metal-organic frameworks (MOFs) are emerging as promising materials for integration into paper-based sensors (PSs), offering unique properties that can enhance sensor performance in various applications. MXenes, with their high conductivity and large surface area, and MOFs, known for their tunable porosity and chemical functionalities, bring distinct advantages to PSs. By leveraging the exceptional properties of MXenes and MOFs, researchers can develop PSs with improved sensitivity, selectivity, and stability, paving the way for advanced sensing platforms with diverse capabilities in environmental monitoring, healthcare diagnostics, and beyond. However, challenges are still existed in incorporating MXenes and MOFs into PSs, including sensitivity, stability, interference, and scalability. Addressing these challenges is crucial for optimizing sensor performance and reliability. Herein, recent developments pertaining to the applications of MXenes and MOFs in PSs are deliberated, focusing on challenges and future perspectives. By examining the unique properties of these materials, exploring innovative sensor designs, and discussing potential solutions to current challenges, this review seeks to pave the way for the development of next-generation PSs with enhanced sensitivity, selectivity, and reliability.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"19 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Paper-Based Sensors with MXenes and MOFs: Exploring the Cutting-Edge Innovations\",\"authors\":\"Sepehr Larijani, Atefeh Zarepour, Arezoo Khosravi, Siavash Iravani, Mahnaz Eskandari, Ali Zarrabi\",\"doi\":\"10.1039/d4ta06561a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MXenes and metal-organic frameworks (MOFs) are emerging as promising materials for integration into paper-based sensors (PSs), offering unique properties that can enhance sensor performance in various applications. MXenes, with their high conductivity and large surface area, and MOFs, known for their tunable porosity and chemical functionalities, bring distinct advantages to PSs. By leveraging the exceptional properties of MXenes and MOFs, researchers can develop PSs with improved sensitivity, selectivity, and stability, paving the way for advanced sensing platforms with diverse capabilities in environmental monitoring, healthcare diagnostics, and beyond. However, challenges are still existed in incorporating MXenes and MOFs into PSs, including sensitivity, stability, interference, and scalability. Addressing these challenges is crucial for optimizing sensor performance and reliability. Herein, recent developments pertaining to the applications of MXenes and MOFs in PSs are deliberated, focusing on challenges and future perspectives. By examining the unique properties of these materials, exploring innovative sensor designs, and discussing potential solutions to current challenges, this review seeks to pave the way for the development of next-generation PSs with enhanced sensitivity, selectivity, and reliability.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06561a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06561a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧杂环烯和金属有机框架(MOFs)正在成为有望集成到纸基传感器(PSs)中的材料,它们具有独特的性能,可以提高传感器在各种应用中的性能。具有高导电性和大表面积的 MXenes 和以可调孔隙率和化学功能性著称的 MOF 为 PS 带来了独特的优势。利用 MXenes 和 MOFs 的优异特性,研究人员可以开发出具有更高灵敏度、选择性和稳定性的 PS,为在环境监测、医疗诊断等领域开发具有多种功能的先进传感平台铺平道路。然而,在将 MXenes 和 MOFs 融入 PS 的过程中仍然存在一些挑战,包括灵敏度、稳定性、干扰和可扩展性。应对这些挑战对于优化传感器性能和可靠性至关重要。本文讨论了有关在 PS 中应用 MXenes 和 MOFs 的最新进展,重点关注挑战和未来前景。通过研究这些材料的独特性质、探索创新传感器设计以及讨论解决当前挑战的潜在方案,本综述旨在为开发具有更高灵敏度、选择性和可靠性的下一代 PS 铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Paper-Based Sensors with MXenes and MOFs: Exploring the Cutting-Edge Innovations
MXenes and metal-organic frameworks (MOFs) are emerging as promising materials for integration into paper-based sensors (PSs), offering unique properties that can enhance sensor performance in various applications. MXenes, with their high conductivity and large surface area, and MOFs, known for their tunable porosity and chemical functionalities, bring distinct advantages to PSs. By leveraging the exceptional properties of MXenes and MOFs, researchers can develop PSs with improved sensitivity, selectivity, and stability, paving the way for advanced sensing platforms with diverse capabilities in environmental monitoring, healthcare diagnostics, and beyond. However, challenges are still existed in incorporating MXenes and MOFs into PSs, including sensitivity, stability, interference, and scalability. Addressing these challenges is crucial for optimizing sensor performance and reliability. Herein, recent developments pertaining to the applications of MXenes and MOFs in PSs are deliberated, focusing on challenges and future perspectives. By examining the unique properties of these materials, exploring innovative sensor designs, and discussing potential solutions to current challenges, this review seeks to pave the way for the development of next-generation PSs with enhanced sensitivity, selectivity, and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Manipulating defects simultaneously boosts the crystal stability and the electrochemical reversibility toward long-life aqueous zinc ion batteries Light-induced degradation of methylammonium tin iodide absorber layers High-voltage Symmetric Supercapacitors Developed by Engineering DyFeO3 Electrodes and Aqueous Electrolytes Advancing High Capacity 3D VO2(B) Cathodes for Improved Zinc-ion Battery Performance High-temperature oxidation behavior of transition metal complex concentrated alloys (TM-CCAs): a comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1