用于面部美感预测的广义连体网络

Yikai Li;Tong Zhang;C. L. Philip Chen
{"title":"用于面部美感预测的广义连体网络","authors":"Yikai Li;Tong Zhang;C. L. Philip Chen","doi":"10.1109/TAI.2024.3429293","DOIUrl":null,"url":null,"abstract":"Facial beauty prediction (FBP) aims to automatically predict beauty scores of facial images according to human perception. Usually, facial images contain lots of information irrelevant to facial beauty, such as information about pose, emotion, and illumination, which interferes with the prediction of facial beauty. To overcome interferences, we develop a broad Siamese network (BSN) to focus more on the task of beauty prediction. Specifically, BSN consists mainly of three components: a multitask Siamese network (MTSN), a multilayer attention (MLA) module, and a broad representation learning (BRL) module. First, MTSN is proposed with different tasks about facial beauty to fully mine knowledge about attractiveness and guide the network to neglect interference information. In the subnetwork of MTSN, the MLA module is proposed to focus more on salient features about facial beauty and reduce the impact of interference information. Then, the BRL module based on broad learning system (BLS) is developed to learn discriminative features with the guidance of beauty scores. It further releases facial features from the impact of interference information. Comparisons with state-of-the-art methods demonstrate the effectiveness of BSN.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5786-5800"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad Siamese Network for Facial Beauty Prediction\",\"authors\":\"Yikai Li;Tong Zhang;C. L. Philip Chen\",\"doi\":\"10.1109/TAI.2024.3429293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial beauty prediction (FBP) aims to automatically predict beauty scores of facial images according to human perception. Usually, facial images contain lots of information irrelevant to facial beauty, such as information about pose, emotion, and illumination, which interferes with the prediction of facial beauty. To overcome interferences, we develop a broad Siamese network (BSN) to focus more on the task of beauty prediction. Specifically, BSN consists mainly of three components: a multitask Siamese network (MTSN), a multilayer attention (MLA) module, and a broad representation learning (BRL) module. First, MTSN is proposed with different tasks about facial beauty to fully mine knowledge about attractiveness and guide the network to neglect interference information. In the subnetwork of MTSN, the MLA module is proposed to focus more on salient features about facial beauty and reduce the impact of interference information. Then, the BRL module based on broad learning system (BLS) is developed to learn discriminative features with the guidance of beauty scores. It further releases facial features from the impact of interference information. Comparisons with state-of-the-art methods demonstrate the effectiveness of BSN.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 11\",\"pages\":\"5786-5800\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609352/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10609352/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部美感预测(FBP)旨在根据人的感知自动预测面部图像的美感分数。通常,面部图像包含大量与面部美感无关的信息,如姿势、情感和光照等信息,这些信息会干扰面部美感预测。为了克服干扰,我们开发了广义连体网络(BSN),使其更专注于美感预测任务。具体来说,BSN 主要由三部分组成:多任务连体网络(MTSN)、多层注意(MLA)模块和广义表征学习(BRL)模块。首先,MTSN 提出了不同的面部美感任务,以充分挖掘有关吸引力的知识,并引导网络忽略干扰信息。在 MTSN 的子网络中,提出了 MLA 模块,以更加关注面部美的突出特征,减少干扰信息的影响。然后,开发了基于广泛学习系统(BLS)的 BRL 模块,在美貌评分的指导下学习辨别特征。它进一步使面部特征不受干扰信息的影响。与最先进方法的比较证明了 BSN 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broad Siamese Network for Facial Beauty Prediction
Facial beauty prediction (FBP) aims to automatically predict beauty scores of facial images according to human perception. Usually, facial images contain lots of information irrelevant to facial beauty, such as information about pose, emotion, and illumination, which interferes with the prediction of facial beauty. To overcome interferences, we develop a broad Siamese network (BSN) to focus more on the task of beauty prediction. Specifically, BSN consists mainly of three components: a multitask Siamese network (MTSN), a multilayer attention (MLA) module, and a broad representation learning (BRL) module. First, MTSN is proposed with different tasks about facial beauty to fully mine knowledge about attractiveness and guide the network to neglect interference information. In the subnetwork of MTSN, the MLA module is proposed to focus more on salient features about facial beauty and reduce the impact of interference information. Then, the BRL module based on broad learning system (BLS) is developed to learn discriminative features with the guidance of beauty scores. It further releases facial features from the impact of interference information. Comparisons with state-of-the-art methods demonstrate the effectiveness of BSN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1