Nway Nway Ei;Kitae Kim;Yan Kyaw Tun;Zhu Han;Choong Seon Hong
{"title":"空地一体化 6G 网络中的数据服务最大化","authors":"Nway Nway Ei;Kitae Kim;Yan Kyaw Tun;Zhu Han;Choong Seon Hong","doi":"10.1109/LCOMM.2024.3465500","DOIUrl":null,"url":null,"abstract":"Integrating terrestrial and non-terrestrial networks has emerged as a promising paradigm to fulfill the constantly growing demand for connectivity, low transmission delay, and quality of services (QoS). This integration brings together the strengths of the reliability of terrestrial networks, broad coverage and service continuity of non-terrestrial networks like low earth orbit satellites (LEOSats), etc. In this work, we study a data service maximization problem in space-air-ground integrated network (SAGIN) where the ground base stations (GBSs) and LEOSats cooperatively serve the coexisting aerial users (AUs) and ground users (GUs). Then, by considering the spectrum scarcity, interference, and QoS requirements of the users, we jointly optimize the user association, AU’s trajectory, and power allocation. To address the formulated mixed-integer non-convex problem, we decompose it into two subproblems: 1) user association problem and 2) trajectory and power allocation problem. We formulate the user association problem as a binary integer programming problem and solve it by using the Gurobi optimizer. Meanwhile, the trajectory and power allocation problem is solved by the deep deterministic policy gradient (DDPG) method to cope with the problem’s non-convexity and dynamic network environments. Then, the two subproblems are alternately solved by the proposed block coordinate descent algorithm. By comparing with the baselines in the existing literature, extensive simulations are conducted to evaluate the performance of the proposed framework.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2598-2602"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Service Maximization in Space-Air-Ground Integrated 6G Networks\",\"authors\":\"Nway Nway Ei;Kitae Kim;Yan Kyaw Tun;Zhu Han;Choong Seon Hong\",\"doi\":\"10.1109/LCOMM.2024.3465500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating terrestrial and non-terrestrial networks has emerged as a promising paradigm to fulfill the constantly growing demand for connectivity, low transmission delay, and quality of services (QoS). This integration brings together the strengths of the reliability of terrestrial networks, broad coverage and service continuity of non-terrestrial networks like low earth orbit satellites (LEOSats), etc. In this work, we study a data service maximization problem in space-air-ground integrated network (SAGIN) where the ground base stations (GBSs) and LEOSats cooperatively serve the coexisting aerial users (AUs) and ground users (GUs). Then, by considering the spectrum scarcity, interference, and QoS requirements of the users, we jointly optimize the user association, AU’s trajectory, and power allocation. To address the formulated mixed-integer non-convex problem, we decompose it into two subproblems: 1) user association problem and 2) trajectory and power allocation problem. We formulate the user association problem as a binary integer programming problem and solve it by using the Gurobi optimizer. Meanwhile, the trajectory and power allocation problem is solved by the deep deterministic policy gradient (DDPG) method to cope with the problem’s non-convexity and dynamic network environments. Then, the two subproblems are alternately solved by the proposed block coordinate descent algorithm. By comparing with the baselines in the existing literature, extensive simulations are conducted to evaluate the performance of the proposed framework.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2598-2602\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10685484/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10685484/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Data Service Maximization in Space-Air-Ground Integrated 6G Networks
Integrating terrestrial and non-terrestrial networks has emerged as a promising paradigm to fulfill the constantly growing demand for connectivity, low transmission delay, and quality of services (QoS). This integration brings together the strengths of the reliability of terrestrial networks, broad coverage and service continuity of non-terrestrial networks like low earth orbit satellites (LEOSats), etc. In this work, we study a data service maximization problem in space-air-ground integrated network (SAGIN) where the ground base stations (GBSs) and LEOSats cooperatively serve the coexisting aerial users (AUs) and ground users (GUs). Then, by considering the spectrum scarcity, interference, and QoS requirements of the users, we jointly optimize the user association, AU’s trajectory, and power allocation. To address the formulated mixed-integer non-convex problem, we decompose it into two subproblems: 1) user association problem and 2) trajectory and power allocation problem. We formulate the user association problem as a binary integer programming problem and solve it by using the Gurobi optimizer. Meanwhile, the trajectory and power allocation problem is solved by the deep deterministic policy gradient (DDPG) method to cope with the problem’s non-convexity and dynamic network environments. Then, the two subproblems are alternately solved by the proposed block coordinate descent algorithm. By comparing with the baselines in the existing literature, extensive simulations are conducted to evaluate the performance of the proposed framework.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.