用于边缘计算的局部差分隐私混合数据聚类迭代算法

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Chinese Journal of Electronics Pub Date : 2024-11-11 DOI:10.23919/cje.2023.00.332
Yousheng Zhou;Zhonghan Wang;Yuanni Liu
{"title":"用于边缘计算的局部差分隐私混合数据聚类迭代算法","authors":"Yousheng Zhou;Zhonghan Wang;Yuanni Liu","doi":"10.23919/cje.2023.00.332","DOIUrl":null,"url":null,"abstract":"As a new computing method, edge computing not only improves the computing efficiency and processing power of data, but also reduces the transmission delay of data. Due to the wide variety of edge devices and the increasing amount of terminal data, third-party data centers are unable to ensure no user privacy data leaked. To solve these problems, this paper proposes an iterative clustering algorithm named local differential privacy iterative aggregation (LDPIA) based on localized differential privacy, which implements local differential privacy. To address the problem of uncertainty in numerical types of mixed data, random perturbation is applied to the user data at the attribute category level. The server then performs clustering on the perturbed data, and density threshold and disturbance probability are introduced to update the cluster point set iteratively. In addition, a new distance calculation formula is defined in combination with attribute weights to ensure the availability of data. The experimental results show that LDPIA algorithm achieves better privacy protection and availability simultaneously.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 6","pages":"1421-1434"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748533","citationCount":"0","resultStr":"{\"title\":\"A Local Differential Privacy Hybrid Data Clustering Iterative Algorithm for Edge Computing\",\"authors\":\"Yousheng Zhou;Zhonghan Wang;Yuanni Liu\",\"doi\":\"10.23919/cje.2023.00.332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new computing method, edge computing not only improves the computing efficiency and processing power of data, but also reduces the transmission delay of data. Due to the wide variety of edge devices and the increasing amount of terminal data, third-party data centers are unable to ensure no user privacy data leaked. To solve these problems, this paper proposes an iterative clustering algorithm named local differential privacy iterative aggregation (LDPIA) based on localized differential privacy, which implements local differential privacy. To address the problem of uncertainty in numerical types of mixed data, random perturbation is applied to the user data at the attribute category level. The server then performs clustering on the perturbed data, and density threshold and disturbance probability are introduced to update the cluster point set iteratively. In addition, a new distance calculation formula is defined in combination with attribute weights to ensure the availability of data. The experimental results show that LDPIA algorithm achieves better privacy protection and availability simultaneously.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 6\",\"pages\":\"1421-1434\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748533\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748533/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748533/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为一种新的计算方式,边缘计算不仅能提高计算效率和数据处理能力,还能减少数据的传输延迟。由于边缘设备种类繁多,终端数据量不断增加,第三方数据中心无法确保用户隐私数据不被泄露。为了解决这些问题,本文提出了一种基于局部差分隐私的迭代聚类算法,命名为局部差分隐私迭代聚类(LDPIA),实现了局部差分隐私。为解决数值类型混合数据的不确定性问题,在属性类别层面对用户数据进行随机扰动。然后,服务器对扰动数据进行聚类,并引入密度阈值和扰动概率来迭代更新聚类点集。此外,还结合属性权重定义了新的距离计算公式,以确保数据的可用性。实验结果表明,LDPIA 算法同时实现了更好的隐私保护和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Local Differential Privacy Hybrid Data Clustering Iterative Algorithm for Edge Computing
As a new computing method, edge computing not only improves the computing efficiency and processing power of data, but also reduces the transmission delay of data. Due to the wide variety of edge devices and the increasing amount of terminal data, third-party data centers are unable to ensure no user privacy data leaked. To solve these problems, this paper proposes an iterative clustering algorithm named local differential privacy iterative aggregation (LDPIA) based on localized differential privacy, which implements local differential privacy. To address the problem of uncertainty in numerical types of mixed data, random perturbation is applied to the user data at the attribute category level. The server then performs clustering on the perturbed data, and density threshold and disturbance probability are introduced to update the cluster point set iteratively. In addition, a new distance calculation formula is defined in combination with attribute weights to ensure the availability of data. The experimental results show that LDPIA algorithm achieves better privacy protection and availability simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
期刊最新文献
Front Cover Contents Virtual Coupling Trains Based on Multi-Agent System Under Communication Delay Model Checking Computation Tree Logic Over Multi-Valued Decision Processes and Its Reduction Techniques Subspace Clustering via Block-Diagonal Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1