{"title":"利用基于经验小波变换的多变量傅立叶-贝塞尔序列展开自动检测束支阻滞","authors":"Sibghatullah Inayatullah Khan;Ram Bilas Pachori","doi":"10.1109/TAI.2024.3420259","DOIUrl":null,"url":null,"abstract":"Bundle branch block (BBB) refers to cardiac condition that causes a delay in the path of electrical impulses, which makes it difficult for the heart to pump blood efficiently throughout the body. Early diagnosing BBB is important in cases where prior heart anomalies exist. Generally, the 12-lead electrocardiogram (ECG) is used to detect the BBB. To ease the ECG recording procedure, vectorcardiography (VCG) has been proposed with three leads ECG system. Manual diagnosis of BBB using ECG is subjective to the expertise of the doctor. To facilitate the doctors, in the present study, we have proposed a novel framework to automatically detect BBB from VCG signals using multivariate Fourier–Bessel series expansion-based empirical wavelet transform (MVFBSE-EWT). The MVFBSE-EWT is applied over the three channels of VCG signal, which results in the varying number of multivariate Fourier–Bessel intrinsic mode functions (MVFBIMFs). To process further, first six number of MVFBIMFs are selected due to their presence in the entire dataset. Each MVFBIMF is represented in higher dimensional phase space. From each phase space trajectory, fractal dimension (FD) is computed with three scales. The feature space is reduced with metaheuristic feature selection algorithm.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5643-5654"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Bundle Branch Block Detection Using Multivariate Fourier–Bessel Series Expansion-Based Empirical Wavelet Transform\",\"authors\":\"Sibghatullah Inayatullah Khan;Ram Bilas Pachori\",\"doi\":\"10.1109/TAI.2024.3420259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bundle branch block (BBB) refers to cardiac condition that causes a delay in the path of electrical impulses, which makes it difficult for the heart to pump blood efficiently throughout the body. Early diagnosing BBB is important in cases where prior heart anomalies exist. Generally, the 12-lead electrocardiogram (ECG) is used to detect the BBB. To ease the ECG recording procedure, vectorcardiography (VCG) has been proposed with three leads ECG system. Manual diagnosis of BBB using ECG is subjective to the expertise of the doctor. To facilitate the doctors, in the present study, we have proposed a novel framework to automatically detect BBB from VCG signals using multivariate Fourier–Bessel series expansion-based empirical wavelet transform (MVFBSE-EWT). The MVFBSE-EWT is applied over the three channels of VCG signal, which results in the varying number of multivariate Fourier–Bessel intrinsic mode functions (MVFBIMFs). To process further, first six number of MVFBIMFs are selected due to their presence in the entire dataset. Each MVFBIMF is represented in higher dimensional phase space. From each phase space trajectory, fractal dimension (FD) is computed with three scales. The feature space is reduced with metaheuristic feature selection algorithm.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 11\",\"pages\":\"5643-5654\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579493/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579493/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Bundle Branch Block Detection Using Multivariate Fourier–Bessel Series Expansion-Based Empirical Wavelet Transform
Bundle branch block (BBB) refers to cardiac condition that causes a delay in the path of electrical impulses, which makes it difficult for the heart to pump blood efficiently throughout the body. Early diagnosing BBB is important in cases where prior heart anomalies exist. Generally, the 12-lead electrocardiogram (ECG) is used to detect the BBB. To ease the ECG recording procedure, vectorcardiography (VCG) has been proposed with three leads ECG system. Manual diagnosis of BBB using ECG is subjective to the expertise of the doctor. To facilitate the doctors, in the present study, we have proposed a novel framework to automatically detect BBB from VCG signals using multivariate Fourier–Bessel series expansion-based empirical wavelet transform (MVFBSE-EWT). The MVFBSE-EWT is applied over the three channels of VCG signal, which results in the varying number of multivariate Fourier–Bessel intrinsic mode functions (MVFBIMFs). To process further, first six number of MVFBIMFs are selected due to their presence in the entire dataset. Each MVFBIMF is represented in higher dimensional phase space. From each phase space trajectory, fractal dimension (FD) is computed with three scales. The feature space is reduced with metaheuristic feature selection algorithm.