社会 NSTransformers:低质量行人轨迹预测

Zihan Jiang;Yiqun Ma;Bingyu Shi;Xin Lu;Jian Xing;Nuno Gonçalves;Bo Jin
{"title":"社会 NSTransformers:低质量行人轨迹预测","authors":"Zihan Jiang;Yiqun Ma;Bingyu Shi;Xin Lu;Jian Xing;Nuno Gonçalves;Bo Jin","doi":"10.1109/TAI.2024.3421175","DOIUrl":null,"url":null,"abstract":"This article introduces a novel model for low-quality pedestrian trajectory prediction, the social nonstationary transformers (NSTransformers), that merges the strengths of NSTransformers and spatiotemporal graph transformer (STAR). The model can capture social interaction cues among pedestrians and integrate features across spatial and temporal dimensions to enhance the precision and resilience of trajectory predictions. We also propose an enhanced loss function that combines diversity loss with logarithmic root mean squared error (log-RMSE) to guarantee the reasonableness and diversity of the generated trajectories. This design adapts well to complex pedestrian interaction scenarios, thereby improving the reliability and accuracy of trajectory prediction. Furthermore, we integrate a generative adversarial network (GAN) to model the randomness inherent in pedestrian trajectories. Compared to the conventional standard Gaussian distribution, our GAN approach better simulates the intricate distribution found in pedestrian trajectories, enhancing the trajectory prediction's diversity and robustness. Experimental results reveal that our model outperforms several state-of-the-art methods. This research opens the avenue for future exploration in low-quality pedestrian trajectory prediction.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5575-5588"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social NSTransformers: Low-Quality Pedestrian Trajectory Prediction\",\"authors\":\"Zihan Jiang;Yiqun Ma;Bingyu Shi;Xin Lu;Jian Xing;Nuno Gonçalves;Bo Jin\",\"doi\":\"10.1109/TAI.2024.3421175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a novel model for low-quality pedestrian trajectory prediction, the social nonstationary transformers (NSTransformers), that merges the strengths of NSTransformers and spatiotemporal graph transformer (STAR). The model can capture social interaction cues among pedestrians and integrate features across spatial and temporal dimensions to enhance the precision and resilience of trajectory predictions. We also propose an enhanced loss function that combines diversity loss with logarithmic root mean squared error (log-RMSE) to guarantee the reasonableness and diversity of the generated trajectories. This design adapts well to complex pedestrian interaction scenarios, thereby improving the reliability and accuracy of trajectory prediction. Furthermore, we integrate a generative adversarial network (GAN) to model the randomness inherent in pedestrian trajectories. Compared to the conventional standard Gaussian distribution, our GAN approach better simulates the intricate distribution found in pedestrian trajectories, enhancing the trajectory prediction's diversity and robustness. Experimental results reveal that our model outperforms several state-of-the-art methods. This research opens the avenue for future exploration in low-quality pedestrian trajectory prediction.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 11\",\"pages\":\"5575-5588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10582783/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10582783/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于低质量行人轨迹预测的新型模型--社会非稳态变换器(NSTransformers),该模型融合了社会非稳态变换器和时空图变换器(STAR)的优点。该模型可以捕捉行人之间的社会互动线索,并整合跨时空维度的特征,从而提高轨迹预测的精度和弹性。我们还提出了一种增强型损失函数,将多样性损失与对数均方根误差(log-RMSE)相结合,以保证生成轨迹的合理性和多样性。这种设计能很好地适应复杂的行人交互场景,从而提高轨迹预测的可靠性和准确性。此外,我们还整合了生成式对抗网络(GAN)来模拟行人轨迹固有的随机性。与传统的标准高斯分布相比,我们的 GAN 方法能更好地模拟行人轨迹中错综复杂的分布,从而增强轨迹预测的多样性和鲁棒性。实验结果表明,我们的模型优于几种最先进的方法。这项研究为未来探索低质量行人轨迹预测开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social NSTransformers: Low-Quality Pedestrian Trajectory Prediction
This article introduces a novel model for low-quality pedestrian trajectory prediction, the social nonstationary transformers (NSTransformers), that merges the strengths of NSTransformers and spatiotemporal graph transformer (STAR). The model can capture social interaction cues among pedestrians and integrate features across spatial and temporal dimensions to enhance the precision and resilience of trajectory predictions. We also propose an enhanced loss function that combines diversity loss with logarithmic root mean squared error (log-RMSE) to guarantee the reasonableness and diversity of the generated trajectories. This design adapts well to complex pedestrian interaction scenarios, thereby improving the reliability and accuracy of trajectory prediction. Furthermore, we integrate a generative adversarial network (GAN) to model the randomness inherent in pedestrian trajectories. Compared to the conventional standard Gaussian distribution, our GAN approach better simulates the intricate distribution found in pedestrian trajectories, enhancing the trajectory prediction's diversity and robustness. Experimental results reveal that our model outperforms several state-of-the-art methods. This research opens the avenue for future exploration in low-quality pedestrian trajectory prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1