Florine TOULOTTE, Mathilde COEVOET, Maxime LIBERELLE, Fabrice BAILLY, Benjamin ZAGIEL, Muriel GELIN, Frédéric ALLEMAND, Patrick FOURQUET, Patricia MELNYK, G.U.I.C.H.O.U. Jean-François, Philippe COTELLE
{"title":"设计内袋 Teads c-terminal 结构域的配体","authors":"Florine TOULOTTE, Mathilde COEVOET, Maxime LIBERELLE, Fabrice BAILLY, Benjamin ZAGIEL, Muriel GELIN, Frédéric ALLEMAND, Patrick FOURQUET, Patricia MELNYK, G.U.I.C.H.O.U. Jean-François, Philippe COTELLE","doi":"10.1016/j.ejmech.2024.117026","DOIUrl":null,"url":null,"abstract":"The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"452 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOWARDS THE DESIGN OF LIGANDS OF THE INTERNAL POCKET TEADS C-TERMINAL DOMAIN\",\"authors\":\"Florine TOULOTTE, Mathilde COEVOET, Maxime LIBERELLE, Fabrice BAILLY, Benjamin ZAGIEL, Muriel GELIN, Frédéric ALLEMAND, Patrick FOURQUET, Patricia MELNYK, G.U.I.C.H.O.U. Jean-François, Philippe COTELLE\",\"doi\":\"10.1016/j.ejmech.2024.117026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"452 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2024.117026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
TOWARDS THE DESIGN OF LIGANDS OF THE INTERNAL POCKET TEADS C-TERMINAL DOMAIN
The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.